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PREFACE

THIS book is primarily intended for medical students as a

text-book on the subject of Geometrical Optics for their

preliminary scientific examinations, though it practically
contains all the Optics required by an ophthalmic surgeon.
It is hoped that it will also prove of service to students of

physics, as some knowledge of the subject is indispensable
if the laboratory experiments are to be understood.

It requires prolonged and deep study to form any vivid

conception of the now accepted theory of light, and in all

elementary books the form in which the undulatory theory
is presented is so crude that it is both untrue and useless.

The subject of Physical Optics therefore has been avoided

entirely; indeed, I am convinced that no thorough elemen-

tary knowledge of that intricate subject can be obtained in

the short space of time allotted to the student for studying

Optics.

As an introduction to mathematical analysis the subject
of Geometrical Optics has no equal, for it insists on the

importance of paying due attention to the meaning of

algebraic signs, and it is also an easy introduction to several

somewhat difficult mathematical conceptions. For instance,

the vectorial significance of the line BA being considered as

equal to AB, or AB taken in the reverse direction, opens

up a new vista to the student of Euclid and elementary

geometrical methods: equally novel is the conception of a

virtual image. At the same time every student can verify

for himself the results of his calculations so simply by
experiment that it will convince him of the reality of the

analytical methods employed.
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vi PEEFACE

I have embodied in the text all that can be reasonably

demanded in any preliminary examination in science, while

the Appendix contains matter that will be of service sub-

sequently in a professional career. The starred paragraphs

may be omitted at a first reading, as a knowledge of them

would be rarely required in the examination-room. The

subject of Cardinal Points is always neglected in the elemen-

tary books ;
it has here been treated, I venture to think, in

a much simpler manner than is customary in the solution

of the problem; for the ingenious graphic solution on

p. 106 I am indebted to Professor Sampson. The subject is

of first importance in understanding the optical properties

of the eye, and it is of the greatest value in dealing simply
and readily with many otherwise difficult questions.

The reader will find a list of all the important formulae

for ready reference at the end of the book, and he will notice

that some of them are of universal application, and that by a

simple transformation, formulae for refraction can be converted

into the corresponding formulae for reflection. The proofs

while preserving their rigid character are made as simple as

possible, and the utmost care has been taken to include only
what is of practical application, excluding all that is of

merely academic interest.

ARCHIBALD STANLEY PERCIVAL.

17, CLAREMONT PLACE,

NEWCASTLE-UPON-TYNE,
Dec. 1912.
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CHAPTEE I

ILLUMINATION PINHOLES SHADOWS

WE shall here confine ourselves to the study of some of the

simplest properties and laws of Light. When we say that

we see the sun or a tree we merely mean that we see the

light that comes from them
;
the sun, of course, sends out

light of its own, whereas the tree passes on or reflects the

light chat it receives from something else. It is obvious

that in neither case do we see the thing itself
; we are only

conscious of a certain sense-impression derived from it. The
nature of this sense-impression and the way in which it is

developed from a physical stimulation of the retina, are

problems that are still engaging the attention of physio-

logists and psychologists ;
with questions such as these the

science of Optics does not deal.

We shall commence our study by the consideration of the

following laws :

LAW 1. In a homogeneous medium light is propagated in

every direction in straight lines.

LAW 2. The intensity of illumination varies inversely as

the square of the distance from the source of

light, and it is greatest when the angle of

incidence is 0.

LAW 3. When the incident rays of light are parallel, the

intensity of illumination varies as the cosine

of the angle of incidence.

Our experience of shadows confirms the truth of Law 1.

A luminous point in space sends out light in all directions,
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illuminating a rapidly enlarging sphere. It is the radii of

this sphere that are called rays of light ; they are simply the

directions in which the light is travelling, and when this

direction is altered by reflection or refraction the rays con-

sidered are bent at an angle. But for either reflection or

refraction to occur a heterogeneous medium must be

encountered; so that we conclude that in a homogeneous
medium light is propagated in every direction in straight
lines.

Experiments with diffraction gratings show us that Law 1 is not

strictly true, and, had we to treat of the phenomena of Diffraction and

Polarization, we should have to explain in detail the electromagnetic

theory of light, or at any rate to give an account of some form of wave

theory. As these subjects do not now concern us, we may regard the

directions in which light travels as straight lines or rays, and in this

way the elementary study of optics will be much simplified.

The second and third laws will require some careful

explanation and consideration before they will be accepted

by the reader.

Illumination. Let S be a source of light, and consider

the light that is being propagated from S in the direction of

the screens AK and BL (Fig. 1). It will be noticed that,

FIG. i.

since light travels in straight lines, the amount of light (Q)
that falls upon the square AK is the same as that which

would illuminate the larger square BL if AK were removed.

Now, in the diagram SB is made equal to 3 SA, so the area

of the square BL is nine times the area of AK. Hence the
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illumination per unit area, or the intensity of illumination, of

BL is of that of AK.

Indeed, BT :A= 1:9"

It is obvious, then, that the intensity of illumination

varies inversely as the square of the distance from the source

of light.

Nearly all photometers are based upon this law ; we will

describe that designed by Eumford. Suppose that we wish

to compare the intensities, I and L, of illumination of two

lamps ; these are placed at distances d and D from a white

screen so that two sharp shadows of a vertical rod placed a

few inches in front of the screen are thrown upon it
; each

shadow is then illuminated by only one of the lamps. Thus
if L, the standard light, be regarded as 1, the other lamp is

moved backwards or forwards until the position d is found

in which both shadows appear equally dark. Each lamp is

then sending an equal amount of light to the screen, and

the relative illuminating power is given by the ratio of

the squares of their respective distances (d? and D2
) from

the screen. The light that the two shadows receive are

respectively -^ and^; consequently when these are equal,

1 : L = d2
: D2

. Thus if D the distance of the standard

light be 2 feet, while d = 4 feet,

1 : 1 = d? : D2 = 16 : 4 = 4 : 1

or I is four times the intensity of the standard light.

It is commonly said that four candles at a distance of

2 feet give the same illumination as one candle at a

distance of 1 foot
; this, although true, could not be satis-

factorily proved by a photometer which measures only the

intensity of illumination from a point source of light.

It may be noted that the accuracy with which such tests

can be made depends upon the "
Light Sense

"
of the observer,

so that if the values of I and L be known, this photometer

may be used as a test of the observer's
"
Light Difference."

On referring to Fig. 1, it will be noticed that both AK
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and BL are at right angles to SB. Now, the angle of incidence

(0) is the angle which a line at right angles to the surface

of the screen makes with the incident ray ;
in this case, there-

fore, the angle of incidence is 0. If the screen were inclined

either forwards or backwards, turning round its base line, it

is clear that the intensity of illumination per unit area of

the screen would be diminished, for in either case some of

the cone of light that is represented would not fall upon the

tilted screen. The diminution of illumination approximately
follows the cosine law (see below) when the incident cone

of light is not too divergent.
If the illuminant were a beam of parallel rays, or were at

an infinite distance as compared with the distance AB, the

law of inverse squares ceases to have any intelligible meaning ;

for then both SA and SB are infinite, and the illumination of

a surface exposed to such a light is constant whatever its

distance. For instance, the light from a morning sun on a

screen is practically the same as the light on a similar screen

placed at a mile's distance to the west.

If I be the intensity of illumination a screen receives from

a beam of parallel rays when the angle of incidence is 0, it

is clear that when the screen is tilted so that the angle of

incidence is 0, the illumination is I cos 0.

Apparent Brightness. The distinction between brightness
and illumination is hardly made clear enough in the books.

Illumination refers to the physical condition of the object
when illuminated, whereas brightness refers to the resulting

sense-impression produced in the observer. It will clearly

depend upon his physiological condition
; but, neglecting this

for the moment, let us consider how an illuminated screen at

BL will appear to an observer at S;

The brightness of an object is naturally measured by the

amount of light it sends to the eye per unit area of its

apparent size; in other words, the brightness (B) of an

object is directly proportional to the quantity of light (Q)
that it sends to the pupil, and inversely proportional to the

apparent area (A) of the surface observed, or B = ~.A
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Since, however, both Q and A are each of them inversely

proportional to the square of the distance of the luminous

object, the apparent brightness is independent both of its

size and of its distance, presuming of course that the medium
is clear and no adventitious absorption occurs in it. If the

physiological conditions be the same, the apparent brightness
of an object merely depends upon the intrinsic luminosity of

the object. A red-hot iron ball is indistinguishable from a

circular disc of iron at the same temperature, showing that

the brightness is independent of the inclination of the

periphery of the ball to the line of sight. The sun and

moon may both be regarded as approximately spherical, yet

both appear to the naked eye as flat discs of uniform bright-

ness. There are, however, several physiological conditions

that greatly affect the apparent brightness of luminous

bodies.

(1) The size of the pupil. The brightness (B) must vary
as the area of the pupil. The brightness of an object will

be much diminished by viewing it through a small pinhole,

for in that case less light enters the eye, as the size of the

pupil is virtually diminished.

(2) The condition of retinal adaptation. Prolonged stay
in a dark room will much increase the apparent brightness

beyond what is due to the consequent dilatation of the pupil.

When high powers of a microscope or a telescope are

used, the brightness of the image is much diminished, as

then only part of the pupil is filled with light. This is

practically equivalent to lessening the area of the pupil (1).

It is impossible by any optical arrangement to obtain an

image whose brightest part shall exceed the brightest part
of the object. If allowance be made for the loss of a certain

amount (about 15 %) of light by reflection and imperfect

transparency of the lenses, the brightness of the image is

equal to the brightness of the object.

There is one case in which this law does not hold good,
and this also depends upon physiological reasons. If the

object be extremely small, it may yet if excessively bright
succeed in stimulating a retinal cone, and so cause a visual
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impression of a tiny point of light, even although its image
does not cover the whole surface of the cone. If such an

object be magnified until its image covers the cone, there will

be no increase of its apparent size although an increased

amount of light will be entering the eye. When, for

instance, stars are observed through a telescope, their

apparent size is not increased, for their image does not

extend beyond one retinal cone, but all the light that falls on

the object-glass may by a suitable eyepiece be concentrated

on the observer's pupil, except that lost by transmission

through the lenses. If, then, a denote the fraction of the

incident light that is transmitted through the telescope

(about 0*85), and O denote the area of the object-glass, and e

that of the pupil, the increase of brightness will be a . Or
Q

if o and p be the diameters of the object-glass and the pupil
o

respectively, the increase of brightness will be a -3 ,
for the

areas of circles are proportional to the squares of their

diameters. If the pupil be regarded as of unit diameter we

get the expression ad2 . This is what astronomers call the
"
space penetrating power

"
of a telescope, that is its power of

rendering very small stars visible.

Precisely the same conditions obtain with the ultrami-

croscope, which is a device for bringing into view fine

granules that are smaller than the limit of the resolving

power of the instrument. By means of dark-ground illumi-

nation these fine particles are relatively so brightly lighted

that they succeed in stimulating a retinal cone even though
their image does not cover its whole surface. ^Resolution

does not occur; whatever its real shape the granule will

appear as a circular point of light, so that all one can really

say is that something very small is present.
Visual Angle. On referring again to Fig. 1 it will be

seen that if the observer's eye were situated at S the small

square AK would completely obliterate the larger square BL,
as they both subtend the same angle at S. Such an angle is

called the visual angle, and it is obvious that if one does not
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know the distance of an object one can form no real idea of

its size. The expression
"
apparent size

"
is quite illusory ;

it

conveys no clear meaning. For instance, some will say that

the sun's apparent size is that of a dinner plate, others that

of a saucer, but it will be found on trial that a threepenny
bit at a distance of 6 feet will completely obliterate it, yet
few would assert that its apparent size was that of a three-

penny bit even when held at arm's length. The importance
of the visual angle will appear when we deal with magnifi-

cation.

Pinholes. If a pinhole be made in a card, and this be

held between a candle and a screen, an inverted image of the

candle flame will be formed upon the screen. The nearer

the screen is brought to the pinhole the smaller and sharper
will be the image. If the candle be brought nearer the pin-

hole, the image will be larger but less sharp. Finally, if the

hole in the card be made larger the image will appear

brighter, but its definition will be again diminished.

The explanation is simple, as will appear from an exami-

nation of Fig. 2. Every point of the candle flame is sending
out light in all directions, and all that falls upon the card is

intercepted by it, so that its shadow is thrown upon the

screen. From each point of the candle flame, however, there

will be one tiny cone of light that will make its way through
the pinhole. On the screen the section of this cone will

appear as a small patch of light. Thus the point A of the

flame will be represented by the patch a, and the point B by
the patch & on the screen. Clearly the height ab of this

inverted image will be proportional to the distance of the

screen from the pinhole ;
if AB be brought nearer the card

each pencil will form a more divergent cone, or if the hole be

made larger the same result will occur
;
hence in both these

cases the patches a and & will be larger and the definition

will be impaired.
If care be taken that these patches of light are not too

large, an image sufficiently sharp for photographic purposes

may be obtained. For some purposes a pinhole camera made
out of a preserved meat tin may prove a more satisfactory
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instrument than one provided with a lens. The disad-

vantage of a pinhole camera is of course the feeble illumi-

nation of the image, which makes a very long exposure

necessary.

FIG. 2.

The best size of pinholes for photographic work, according to

Abney, is determined by the approximate formula

p = 0-008Jd

Thus, if the distance between the pinhole and the plate be 9 ins., the

diameter of the pinhole should be O'OOS x 3 = 0'024 in.

Shadows. When the source of illumination may be

regarded as a point, it is clear that an opaque obstacle

like AK in Fig. 1 will be lighted only on its proximal sur-
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face, while the prolongation of the cone of light indicates the

cone of shadow cast by AK.

If, however, the source of light be a luminous body

possessing innumerable points, the object will be illuminated

by innumerable cones of light, and we must imagine a shadow

for each of them behind the object. The space behind the

object which is common to all of these shadow cones will

represent the area of total shadow, or umbra. There will,

however, be a space outside this which is only in shadow as

regards part of the luminous body while it receives light from

another part of it, and is consequently partially illuminated.

This is the area of part-shadow, or penumbra. In the adjoin-

ing illustration (Fig. 3) two opaque bodies are represented,

FIG. 3.

one being smaller and the other larger than the luminous

body which is placed between them. In each case for the

sake of clearness the limits between umbra and penumbra
have been more sharply defined than they should be. When
a total eclipse of the sun occurs, the moon is so situated that

it intercepts all the light coming from the sun towards the

earth
;
the earth is then in the umtoa : when a partial eclipse

occurs, the earth is in the penumbra.
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QUESTIONS.

(1) What is the height of a tower that casts a shadow 52 feet 6

inches in length on the ground, the shadow of a stick 3 feet high being
at the same time 3 feet 6 inches long ?

(2) A pinhole camera, the length of which is 7 inches, forms an

inverted image 4 inches high of a house that is in reality 40 feet high.
What is the distance of the camera from the house ?

(3) A gas lamp distant 5 feet and an electric light distant 150 feet

throw on an opposite wall two shadows of a neighbouring post. If

these two shadows are of equal intensity, what is the relative illuminat-

ing power of the lights ?

(4) If the electric light in (3) were raised vertically to such a height
that its distance from the wall were 300 feet, what would be approxi-

mately the relative intensities of the shadows ?



CHAPTER II

REFLECTION AT PLANE SURFACES

WE must now consider the manner in which light is reflected

by polished surfaces. The following two laws when properly

understood explain every possible case of reflection :

LAW 1. The reflected ray lies in the plane of incidence.

LAW 2. The angles which the normal (at the point of

incidence) makes with the incident and with

the reflected ray are numerically equal, but

they are of opposite sign.

These laws hold good whether the surface be plane or

curved
;
in the latter case we have only to draw a tangent

at the point of incidence, and consider the ray reflected at

this plane. The meaning of the technical terms and the

sign of an angle will be explained in the next paragraph.
Reflection at Plane Surfaces. Let AB represent a plane

reflecting surface (Fig. 4), and let S be a luminous point

sending out light in all directions. Now, if SN be one of

these directions, SN represents an incident ray, N the point

of incidence, and NY the normal at that point. Now, the

plane of incidence is that plane that contains both the

incident ray and the normal, so the plane of the paper is the

plane of incidence. According to the laws just stated NQ is

the corresponding reflected ray, for the angle of incidence

YNS is numerically equal to the angle of refraction YNQ,
which lies in the plane of the paper, and is of opposite sign to

YNS. The angle YNS is measured by the rotation at N of

a line in the direction NY to the position NS, i.e. in the

direction of the hands of a clock, whereas YNQ is measured
11
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in the counter-clockwise direction. This is what is meant by
the sign of an angle, so that if YNQ be denoted by $' and

YNS by 0, we have in reflection 0'
= - <.

If, then, there be an eye in the neighbourhood of Q it will

receive light coming towards it in the direction NQ ;
but we

have not yet found from which point in this line it will appear
to have come. To do this we shall have to take another

incident ray, SM say, and discover where the corresponding
reflected ray intersects the previous one.

FIG. 4.

It is clear that as the incident and reflected rays make

equal angles with the normal they must make equal angles

with the mirror
;
so we made the angle BMR numerically

equal to AMS, and produce the reflected ray RM to meet QN
produced in S'. Then S' is the point from which the light will

appear to have come.

Now, it is clear that in the triangles SMN and S'MN we
have the base MN common, and the angles at the base equal,

so the triangles must be equal ;
and if we join SS', we see that

the two sides SM, MA are equal to the two sides S'M, MA,
and the included angle SMA is equal to S'MA

;
so S'A is

equal to SA and the line SS' is at right angles to AB.

Similarly, it may be shown that any other ray in the same
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plane will be reflected in such a direction that when produced
backwards it will meet SS' in S'. Now, if we suppose the

paper to be revolved about an axis SS', the figure will repre-
sent the course of incident and reflected rays in every plane.

Hence all the rays that fall upon the mirror from S, whatever

the plane of their incidence, will be so reflected that the

prolongations of these reflected rays will intersect at the

point S', so that an image of S will be formed at S'.

It will be noted that this image has no real existence; the

reflected rays do not really

come from the back of the

mirror, they only appear
to come from the point S' :

such an image is called a

virtual image. Subse-

quently we shall deal with

real images, and the dis-

tinction between them is

simply this : Real images
are formed "by the inter-

sections of the reflected (or

refracted) rays themselves ;

virtual images are only

formed by the intersections

of their prolongations.

Construction of the

Image of an Object. Sup-

pose that it is required
to construct the image of the object Pp as seen in the

mirror NM (Fig. 5); all we have to do is to draw lines

perpendicular to the mirror (or its prolongation) from P
and p to Q and q, so that Q and q are as far behind the

mirror as P and p are in front of it
;
then Qq is the virtual

image of Pp. If an eye be situated in the neighbourhood of

E, and we wish to show the actual course of the light that

reaches the eye from P, we join EQ, cutting the mirror at M,
and then we join MP. The light that forms the image Q for

an eye at E reaches it by the path PM and ME, Another

FIG. 5.
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eye at K' will see the same image Q by means of light that

travels in the direction PN and NE'.

It will be noted that the image Qq is similar and equal

to the object "Pp, for they both are similarly situated with

respect to the mirror. Since, however, the object and the

image face each other, the observer gets a view of that side of

the object that he could not see without turning it round.

Hence he thinks the object has been turned round so that its

right and left sides have been interchanged. For this reason

the image of a printed letter will appear
"
perverted," that

is, it will appear upright, but it will resemble the type from

which it was printed.

Deviation produced by Rotation of Mirror. If the

mirror AB (Fig. 6) be slowly rotated into the position cib,

the image S' will appear to rotate through an angle twice

as great in the same direction, so that finally it will appear
to have moved to S". The explanation is obvious. If S be

the object, when the mirror is in the position AB its image
will be at S'

;
on rotating the mirror through an angle 9 its

normal will also rotate through the same angle, so that

SIY = 9, but then reflection will occur in the direction

IK, and the image of S will appear at S". Clearly,
SIS" = SIE = 29.

There are several important applications of this principle
in daily use

;
as examples we may mention the sextant and

the mirror galvanometer, but we will describe in greater
detail the laryngoscope. When this instrument is used, the

mirror, which is inclined at an angle of 45, is placed at the
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back of the pharynx; when properly placed an image of

the larynx is seen with its axis horizontal. Since the image
and object are similarly situated with respect to the mirror

and not to the observer, the anterior parts of the larynx

(epiglottis, etc.) are represented in the upper part of the

image, while the posterior structures (arytenoids, etc.) occupy
the lower portion of the image.

Repeated Reflection at Inclined Mirrors. When an object
is placed between two plane mirrors inclined at an angle, a

limited number of images may be seen by an observer in a

FIG. 7.

suitable position. If a be the angle between the mirrors,
,.-180 ,

and it =
7i, the number of images seen by an eye in a

suitable position will be 2n - 1, if n be an integer. Moreover,
the object together with its images then forms a perfectly

symmetrical figure with respect to the reflecting surfaces.

Fig. 7 represents two mirrors, AC and BC, inclined at an

angle of 60 with an object PQ between them. As 2n 1 in

this case is 5, 5 images are seen, and the symmetry of the

figure is evident. This is the principle of the kaleidoscope.
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1 80
Suppose that a = 40, then n = -^- or 4J ;

in such a case

it will depend entirely on the position of the observer

whether 4 or 5 images are seen.

The position of the inages is easily found by the construction now
familiar to the reader. Let AC, BC (Fig. 8) be two plane mirrors

inclined at an angle of 90, and let^? denote the position of an object
between them. From p draw perpendiculars to each mirror, and

produce them to pf and p^ so that pf and p* are as far behind the

FIG. 8

mirrors AC and BC respectively asjp is in front of them. Then pf and

pj are two of the images. To find the position of the third image pn ,

we must produce AC and BC and consider these prolongations as

mirrors and the images we have already found as objects. That is

to say, we make pu either at an equal distance behind AC produced
to that of p^ in front of it, or we make pn an equal distance

behind BC produced to that of pf in front of it. It will be noticed

that whichever construction is used, pn occupies the same place. To
find the path of light from pn to an eye at E, join jpnE, cutting BC
in Q ; join pfQ, cutting AC in K

; join jpR. Then the path of the light
from p is ^B, RQ, QE. If E had been close to AC, on joining _pnE
the mirror AC instead of BC would have been cut, so that in such a

case the last reflection would have been from the mirror AC,
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must be joined to the intersection on AC. These constructions are of

little importance except for examination purposes.

When the mirrors are parallel to each other, the angle
1 80

between them is 0, and since
-^-

= oo
,
an infinite number

of images might be seen if certain physical conditions did

not prevent their observation.

QUESTIONS.

(1) Two parallel mirrors face each other at a distance of 3 feet,

and a small object is placed between them at a distance of 1 foot from
one of them. Calculate the distances from this mirror of the three

nearest images that are seen in it.

(2) Two mirrors, AC and BC, are inclined at an angle of 45 ; an

object, P, is so placed that ACP = 15. How many images will an

observer halfway between the mirrors see ? Trace the path of light

that gives rise to the second image pnb seen in BC.

(3) If in the last example BC were rotated so that ACB = 135,
how many images would an observer (E) halfway between the

mirrors see ? In what position would he see more ?
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REFLECTION AT A SPHERICAL SURFACE

EEFLECTION at irregularly curved surfaces can only be treated

by the method mentioned on p. 11. At the point of

incidence a tangent plane is drawn, and for that particular

incident ray the reflection is considered as taking place at

that tangent plane. Fortunately, however, there are much
less tedious methods of dealing with reflection at spherical

surfaces, with which alone we are now concerned
;
these we

proceed to describe in their simplest form.

Concave Spherical Mirrors
;
Axial or Centric Pencils. Let

AK represent a concave mirror, its surface being part of a

sphere of which the centre is at C (Fig. 9). Any line drawn

through C to the mirror is called an axis of the mirror, and

when the parts of the mirror on either side of the axis are

symmetrical it is called the Principal Axis. In the figure

CA is the principal axis, and A the vertex of the mirror.

Let P be a luminous point on the axis distant PA or p from

the mirror, and consider the incident ray PK when the point
K is near the vertex A. Join CK and make the angle CKQ
numerically equal to the angle of incidence CKP. If now
the figure be supposed to revolve round the principal axis

PA, it is clear that PK will trace out the limits of a thin

axial cone of incident light, while the point K will trace

out a narrow circular zone on the mirror, and the reflected

rays from this zone must all intersect the axis at the point

Q. Consequently Q must be the image of P as formed by
reflection at this narrow zone. Let CA, the radius of the

mirror, be denoted by r, and let QA be denoted by q.

18
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Now, since in the triangle PKQ the vertical angle is

bisected by KC, which cuts the base at C

(Euc. vi. 3)QK
~~

CQ
~"
CA - QA r-q

When K is very near the vertex A, PK and QK will be

almost identical with PA and QA; under these circum-

FIG. 9.

stances we may replace PK and QK by p and q, and so we

get the following formula for a very thin centric pencil :

P =p-r

.'. pr pq = pq rq or qr + pr = 2pq

On dividing by pqr we obtain the formula

pqr
The point Q marks the situation of the real image of P

;

it is a real image because it is formed by the intersection

of the reflected rays themselves (see p. 13). Again, Q is

often called the conjugate focus of P. It is termed a focus

(fireplace) because the place where heat rays intersect is

hotter than any other. If, for instance, the mirror be used

to form an image of the sun, a piece of paper placed at the
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focus will be burnt up. The term "conjugate" implies that

if the object P be placed at Q, the image will then be in the

old situation of P. In fact, P and Q are mutually con-

vertible whenever the image formed at Q is real.

We will now consider the formula a little more closely.

If PA or p be diminished until p = r
y QA or q becomes

greater until q becomes equal to r, for

q r p r r r

This only means that when the luminous point is placed

at C all the incident light reaches the mirror in the direction

of its radii, or the normals to the surface, so that the

reflected light must travel back by the same path ;
the image

Q is then coincident with the object at C.

If the object P be brought still closer to the mirror

(between C and F), the image Q will be formed at a greater

distance from it
;
in fact, the situations of P and Q will be

interchanged.
Now let us suppose the object P to be removed to a great

distance
;
the image Q will be formed nearer the mirror. In

the limiting case when the distance of P is infinite, let us

see what our formula tells us. Here p = oo .

so + - = -. But 1 = 0, so - = -
cc q r oo q r

This means that if the object is at an infinite distance, or,

what comes to the same thing, if the incident beam consist

of parallel rays, the corresponding focus is at a point F such

that FA = CA. This point F is called the Principal Focus,

and the distance FA is usually symbolized by/. Clearly,

as the direction of light is reversible, it follows that if a

luminous point be placed at F the reflected rays will form a

beam of light parallel to the axis.

T
Since we now know that/ = ~, we may give the previous

formula in its more usual form

M =U/ +/=i
P 2 / P 2
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What will happen if the object be placed nearer the

mirror than F? Our formula will tell us. Suppose that

/ = 4, and that p = 3
;

QA or q is then 12. What is the meaning of the

negative sign ? We have regarded the direction from left to

right (e.g. PA and CA) as positive ; the opposite direction,

from right to left, must therefore be the negative direction.

Consequently, QA must now be measured in this direction,

that is, the point Q must be behind the mirror. The reader

is urged to draw for himself a diagram illustrating this case
;

that is, let him draw an arc of 8 cm. radius with its focus at

4 cm. from the mirror, and from a point P, 3 cm. from the

mirror, let him draw any incident ray, PK, to the mirror
;

let him then mark a point Q, 12 cm. to the right of (behind)
the mirror, and join QK and produce it. He will find that

the normal CK bisects the angle between PK and the pro-

longation of QK, showing that KQ is the prolongation of the

reflected ray in this case in other words, Q is a virtual

image of P, as it is formed, not by the reflected ray itself, but

by its prolongation (see p. 13).

Whenever Q is a virtual image, P and Q are no longer

interchangeable ;
in this case, for instance, the object if placed

in the situation of Q would be behind the reflecting surface

of the mirror, so no image would be formed.

Signs. This case will indicate the importance to be

attached to the meaning of algebraic signs. It will be found,
if due attention be paid to them when thin axial pencils
are being considered, that there are only two formulae that

need be remembered for reflection or refraction at single

spherical surfaces, and for lenses of any kind or for any com-

bination of them. The essential thing is to be consistent

during any calculation
; any inconsistency may lead to totally

erroneous results.

In all optical problems it is most important to remember
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that the symbol PC for a line, such as that in Figs. 9 and 10,

denotes the distance from P to C, so that it not only

expresses a length, but also the direction in which that

length is measured. Euclid uses the term PC as identical

with CP. We, however, must regard PC as a vectorial

symbol, and therefore equal to CP. Consequently

PC = PA + AC = PA - CA = AC - AP

Similar vectorial expressions will be used throughout this

book.

We have adopted the usual conventions that directions

from left to right are considered positive, and those from

right to left negative. Further, we shall regard directions

from below upwards as positive, and those from above down-

wards as negative. As regards angles, we shall designate

the directions of rotation in the usual way. All rotations in

the counter-clockwise direction are considered positive, while

all clockwise rotations are considered negative. The term
" Standard Notation

"
will in this book be used to denote

this device of signs to indicate these various directions.

In optics more blunders are due to the neglect of the

meaning of signs than to any other cause, so it is well worth

while devoting some attention to the subject. When a cor-

rect mathematical formula is given, one knows that it must
be universally true, whatever values and whatever signs are

given in a special case to the algebraic symbols in the

formula.

Convex Spherical Mirrors. When the mirror is convex,

the point C, the centre, is behind the mirror, so that CA is

negative. A mathematician would know without any further112
proof that the formula - -f - = - must be true if the appro-

p q r

priate sign were given to r. As, however, all our readers

are not necessarily mathematicians, we will give a formal

proof of this case.

As before, let C (Fig. 10) be the centre of curvature of

the convex mirror AK, and let the incident ray PK be
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reflected at K in the direction KR, so that the angle of inci-

dence =
$'. Produce RK to Q, cutting the axis in Q.

Then PKQ is a triangle, of which the exterior angle PKR
is bisected by the line CK, that meets the base produced
in C.

. PK_PC_PA + AC_PA-CA_^-r
QK

"
CQ

~
CA + AQ

"
CA - QA

~
r - q

(

When, therefore, a thin centric pencil is under considera-

FIQ. 10.

tion, and PK and QK may be regarded as equal to PA and

QA, or p and q, we have, as before

P = P^L, which reduces to i + i = ?

q r q p q r

When the incident rays are parallel, i.e. when p = cc
,

1 121- = 0, consequently - = - =
-?, so they are reflected as if

P 2 T f
they came from a point F behind the mirror, such that FA
= JCA ;

in other words, the principal focus is virtual and /1121
is negative. We see, then, that the old formula -+-= -= -

still holds good if we assign the proper negative value to

r and /.
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Ex. An object is placed 8 ins. in front of a spherical

mirror, and an image of it is formed 4*8 ins. behind the

mirror. What is the radius of curvature of the mirror, and
what is its focal length ?

In this case p = 8 ins. and q = 4'8 ins., for the image
is behind the mirror. So we get, on substituting these

numerical values for the symbols, and paying due regard to

the signs they bear

1121 11
/./= -12 andr= -24

The negative signs show that both the radius and the

focal distance are to be measured in the negative direction,

i.e. both C and F are behind the mirror, that is the mirror is

convex.

This example will show the wealth of information that is

contained in this simple formula.

Geometrical Construction of the Image. Fig. 11 represents
a concave mirror, the centre of which is at C, and an object, AB,
on the principal axis of the mirror

;
we are now going ibo show

how the image ab can be constructed, assuming, of course,

that only centric pencils contribute to its formation. As has

already been pointed out, the previous formula is only true

for thin centric or axial pencils, consequently in this case we
shall draw a tangent plane HOH' to the vertex of the

mirror, which will be a better representation of this centric

portion than the whole curved surface of the mirror would
be. In the figure, the line ACa may be taken to represent
a thin centric pencil as it passes through the centre C, but it

lies on a secondary, not on the principal, axis, and for this

reason the term "
centric

"
is less likely to be misunderstood

than "
axial." The- plane HOH' will in future be called the

Principal Plane. We will give two methods by which the

image a can be found of a point A that is not on the principal
axis.

(A) Point not on the Principal Axis.
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(1) Draw ACa through the centre C, and draw AH to

the principal plane parallel to the principal axis
;

draw HFa through the focus to meet the line ACa
in a.

Then a, the point of intersection of HFa and ACa,
marks the position of the image of the point A.

(2) (Dotted lines.) Draw ACa through C, and draw

AFH' through the focus to the principal plane;
draw H'a parallel to the principal axis until it

meets ACa in a. The point a is the image of the

point A.

FIG. 11.

(1) The reason of this procedure will be apparent from the

following considerations. We know that any ray parallel to

the principal axis will be reflected through F, the principal
focus

; consequently, if AH represent such a ray it must be

reflected as HFa. Further, we know that any ray drawn

through the centre C must be reflected back along the same
course through C. Hence the point of intersection a must

represent the image of A. It is true that the line AH does

not represent any ray that is actually incident on the

mirror, for the point of its incidence would be so eccentric

that it would not be reflected through F. For this reason

the eccentric part of the mirror (suggested by spaced lines)
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has been covered up. We are, however, justified in asserting

that a small centric pencil from A will come to its conjugate
focus at the point of intersection a of HF and AC.

(2) We also know that light from any luminous point at

F must be reflected back parallel to the principal axis;

consequently the ray FH' must be reflected back as H'a,

so that a, its point of intersection with AC, must be the

image of A.

A vertical plane at F perpendicular to the principal axis,

such as FD, is called the Focal Plane, and has the following

properties: Light from any point on this plane will after

reflection travel in rays parallel to that axis on which the

point lies. For instance, light from D will be reflected from

the mirror as a beam of parallel rays in the direction H"5,

which is parallel to DC, the axis on which D lies. Also all

pencils of parallel rays that are but slightly inclined to the

principal axis will after reflection intersect in some point on

the focal plane. This property enables us to determine the

position of the image of a point that lies on the principal
axis.

(B) Point on the Principal Axis. (Spaced and dotted

lines.)

Through B draw any ray BDH", cutting the focal plane
in D; join DC and draw H"& parallel to DC, cutting the

principal axis in b. Then the point I is the image of the

point B.

Precisely the same construction can be applied to the

case of a convex mirror, which the reader is recommended to

draw for himself. It will be noted that whenever the

object is vertical, the image also will be vertical, so that

in drawing the image of AB in practice, all one has to do
is to find the position of a by either of the methods given,
and then draw a vertical line from it to meet the principal
axis in &.

Size of the Image. From a consideration of Fig. 11 it

is easy to find an expression for the height of the image (i)
as compared with the height of the object (0).
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(1) Noting that ba is equal to OH', we find by similar

triangles that

*___&_ OH; _FO_ FO /
o
~
BA

~
BA

~
FB

""
FO - BO ~/ -p

(2) And, seeing that BA is equal to OH, it follows that

i-*!L lOL F& - FQ ~ &Q -/ -
9

o
"
BA

"
OH

~
FO

"
FO /

The formulae which we have now proved,
- 4- =

1,

dealing with the position of the image, and these

.

o f-P f

dealing with the size of the image, can hardly be overrated,

since almost exactly the same formulae will be found to be

true when we come to deal with refraction at spherical

surfaces, while the method of construction of the image and

the method of determining its size are merely a repetition

of what we have just done.

It should be noted that all erect images are virtual, while

all inverted images are real.

An example or two will show the value of these formulas.

Ex. (1) A concave mirror has a radius of curvature

of 10 ins. What is its focal length ? An object 4J ins.

in height is placed 50 ins. :in front of the mirror. What
is the height of the image, and where is it formed ?

M
Here r = 10, so/ = ~ or 5 ins.

And since +=!, / = l _ / =^"/ Q = fP
p q q P P p-f

(This is the best form to use in all cases, as a similar

form holds good for refraction at spherical surfaces.)
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The position of the image is then 5| ins. in front of the

mirror, since q is positive.

Again, since - =-r )
- =--=-^ = - = - -

o f po 5 50 45 9

The image is therefore inverted (as the sign is negative)
and real, and it is the height of the object ;

i.e.

It is immaterial which formula for the size of the image
we use. Let us try the other formula :

So the height of the image is ^(4J), or ^ in.

Of course, the formula about size refers also to width.

Our second example is slightly more difficult.

Ex. (2) An object 6 cm. in width is placed at a

distance of 9 cm. from a reflecting surface. A virtual image
2*4 mm. in width is formed of it. What is the radius of

curvature of the reflecting surface ?

Since - = ^
, if

-
ip = fo :.f(i

-
o)
= ip

and since the image is virtual, i is positive.

Consequently

2/* = 2iP - 2 x 2 '4 x 9Q - 4 '8 x 9Q
'

'
~

i - o~ 2-4-60 -57'6

48 60

6'4- 8

As the sign is negative, the surface must be convex.

It may be noted that this is the basis of the method by
which the radius of curvature of the cornea is determined in

a living subject. A special apparatus is used to measure the

size of the image reflected from the surface of the cornea, and

from this measurement the curvature is calculated as in this

example.
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Graphic Method for Spherical Mirrors. There is a very

simple graphic method for finding the position and relative

size of the image, which we will now give. The formula
- -f

= 1 is so similar in form to the well-known equation
P

x If
to a line in terms of its intercepts

- +
|
= 1, that it at once

suggests the following device (Fig. 12).

Draw two axes PH and HQ at right angles to each other,

and consider H the origin. On PH mark off a distance F'H

equal to the focal length / of the mirror, and draw the line

FT also equal to/ at right angles to PH.

FIG. 12.

As with a concave mirror / is positive, F'H and F"F

must be measured in the positive directions, i.e. either from

left to right or from below upwards (standard notation).

Suppose that an object is placed 20 ins. from a concave

mirror of focus 4 ins., and we wish to determine the position,

size, and nature of the image. Mark off the point P on PH
so that PH = 20

; join PF", cutting HQ in Q.

Then QH is the distance of the image from the mirror
;

as it is measured from below upwards QH is positive, and it

is found to be 5 ins. in length, so the image is situated 5 ins.

in front of the mirror.

Again,
*-

=j ; but/ - p = F'H - PH = F'P

i F'H , . , . ... . 4
* - = ^F7r> > which in this case is ^
o r r lo

As F'H and F'P are measured in opposite directions -
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must be negative, so the image is inverted and real, and its

height is ^ of that of the object.

With the convex mirror /is negative, let/= 4 ins., so

FH and F"F are drawn as shown in Fig. 13, in the negative

direction. Suppose the object to be 16 ins. from the mirror,

PH is then made 16, and QH is found to be - 3'2 (negative

because measured downwards). Consequently the image is

situated 3*2 ins. behind the mirror.

A A i F'H -4 1
Andas _=_ = __=_

the image is virtual and erect, because - is positive (F'H and

Fia. 13.

FT being measured in the same direction), and its height is

J that of the object.

*Eccentric Pencils
; Spherical Aberration, In the preced-

ing sections we have been considering the reflection of small

centric pencils only ;
when the incident light forms a wide

cone the several reflected rays cross each other at different

points, as is indicated in the diagram (Fig. 14). Paying
attention first to the eccentric pencil that falls on the mirror

at PQ, the reflected rays cross at FI and meet the axis in a

line at F2 nearer the mirror than I, the conjugate focus of S

for centric pencils. The figure, of course, only represents a

section of the whole mirror
;

if we consider it to be rotated

through a small angle about the axis OCS, the point FI will

trace out a small arc (approximately a line) so that at

FI and F2 two small lines will be formed : these are called

the primary and the secondary focal lines.

It will be noticed, also, that all the reflected rays that are

incident on the mirror from S touch a certain caustic surface
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which has a cusp at I. This caustic curve may be commonly
observed on the surface of the fluid in a teacup, being formed

by the light that is reflected from the inside of the cup. A
caustic curve is frequently defined as the locus of the primary
focal lines

;
this only means that it is formed by the points

of intersection of successive reflected rays.

The term "
spherical aberration

"
is applied to all the

phenomena depicted in Fig. 14. If the reflecting surface had

not been spherical, but had been part of an ellipsoid of

revolution of which S and I were foci, all the light from S

that fell on this elliptical surface would have been accurately

FIG. 14.

reflected to the conjugate focus I, and the surface would then

be an "
aplanatic

"
(airXavi'ig, not wandering) surface for the

source S. Similarly, a paraboloid would be aplanatic for

parallel rays.

The "
longitudinal aberration

"
(IF2) of a thin eccentric

pencil is the distance between the point where it cuts the axis

and the focus for a thin centric pencil.

Fig. 15 gives another view of the reflected pencil which

is shown in section as the shaded area in Fig. 14. The
incident cone is supposed to be pyramidal, so that the reflect-

ing portion of the mirror concerned is of the rectangular

shape PQKKi. The reflected pencil is of a very curious shape,
the upper and lower rays (e.g. QFi and PFX) of the two sides
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intersect in the primary focal line at FI, while the rays QF2

and EFa from the upper edge intersect at F2 the bottom of

the secondary focal line, and PF2 and EiF2 from the lower edge
at the top of the secondary focal line. Pencils like this

which do not converge to a point but to two focal lines are

called "astigmatic pencils" (a priv., crrfyjua, a point). As

FIG. 15.

we shall find that precisely the same condition arises with

eccentric pencils when refracted, it is well to spend some

little time in forming a clear conception of the solid figure

represented between the two focal lines at FI and F2 . In

crystallography this sort of double wedge is called a sphenoid.
Near F2 its section would be oblong, its height much greater

than its width; at D the section would be square, while

nearer FI it would again be oblong, but with its width greater
than its height. Clearly if the incident pencil were circular
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in section, the outline at D would be a circle. D is then the

position of what is called
"
the circle of least confusion," and it

is the best representative of the focus of an astigmatic pencil.

We will conclude this chapter by giving the formulae

without proof by which the position of the primary and

secondary focal lines can be determined of an incident thin

oblique or eccentric pencil on a spherical surface (Appendix,

p. 109). Let SP be denoted by u, FI? by vl} and F2P by v2 ,

and the angle of incidence by <.

Then Ul.-JL and
l- + L =

u V rcos< u v r

QUESTIONS.

(1) An object 9 cm. in height is placed 10 cm. in front of a concave

mirror of focal length 25 cm. What is the height and character of the

image, and where is it formed ?

(2) The radius of a concave mirror is 16 ins. What is the distance

of the image from the mirror when the object is placed at a distance of

12 ins., and when placed at a distance of 4 ins. ?

(3) A virtual image one-fourth the height of the object is formed

by a mirror. If the distance of the object be 9 ins. what is the radius

of the mirror ?

(4) An inverted image of a candle is thrown on a screen at a
distance of 6 feet from a mirror of focal length 6 ins. Where is the

candle placed, and what is the relative size of the image ?
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REFRACTION AT PLANE SURFACES

So far we have been considering the path taken by light as it

travels through a single homogeneous medium ;
we must now

find out what happens when light passes through more than

one medium. For the sake of simplicity, we shall limit our-

selves to the consideration of homogeneous light, i.e. light of

the same wave frequency or colour, traversing different homo-

geneous media. When light passes from one medium into

another, e.g. from air into glass, its course is altered, and the

light is said to be refracted. The subject was experimentally

investigated in 1621 by Willebroard Snell, who found that

there are two laws governing refraction :

LAW 1. The refracted ray lies in the plane of incidence.

LAW 2. The sines of the angles of incidence and refrac-

tion are in a constant ratio for the same two

media.

The first law requires no explanation after what we
have already said about the similar law of reflection

(P . ii).

Students of physics will know that light in vacuo travels

at a rate of more than 186,000 miles per second, and that in

dense media its velocity is less. Indeed, in Optics the ex-

pression dense medium merely means a medium in which

light travels with a relatively slow velocity. For instance,

water is dense as compared with air, but rare as compared
with glass ,

the speed of light in water is about f of its speed
in air, but about

|-
of its speed in glass. Now, it has been

mathematically proved and experimentally demonstrated

that the constant ratio in Snell's law is identical with this

34
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velocity ratio. If we denote the angle of incidence by <j>
and

that of refraction by #', when light passes from water into

air its course is so altered that
sin

,
=

, i.e. about f.

v

When light passes from air into glass, | approx-

mately, for the speed of light in air is about f times its speed
in glass.

Let BB' (Fig. 16); represent the vertical plane that

forms the boundary of a dense

medium, glass for instance, and

let SC be an incident ray, CQ the

corresponding refracted ray, and

let NCM denote the normal at

the point of incidence C. The

original direction of the incident

light is indicated by the dotted

line OS', so MCS' is the angle
of incidence

(ft,
and MCQ is the

angle of refraction ^'. Note that

the angles of incidence and refrac-

tion are to be measured from the
FIG. 16.

same normal, in this case CM. In the figure
S'L

and
sinf ~QM'

they are both positive, as of course they should be, for the

ratio -
^7 is the ratio of the speed of light in the first

medium to its speed in the second medium. As light is

reversible, we see that an incident ray in the direction QC in

the dense medium will be refracted at the surface BB' of the

rare medium as CS. Indeed, it follows from Law (2) that

all light on entering a dense medium is refracted towards the

normal, and on entering a rare medium away from the

normal.

The ratio of the velocity of light in a vacuum to its

velocity in a certain medium is termed the absolute index of

refraction of that medium, and it is denoted by the symbol

fi. Thus, if the absolute index of water be f and that of a
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certain kind of glass be f,
it is easy to determine the relative

yw
index of water and glass, or .

339= X -T = x or

sm

4 8

Snell's law may be then stated as T* y
,
= 2

,
where the

sin 0' /n'

subscripts denote the first and second media
;
when the first

medium is air,
-- 2. ^2 . The refractive index of air

differs so slightly from unity (being less than 1*0003) that

we shall commonly regard it as unity and denote it by JUQ.

Eeturning again to Fig. 16, the angle S'CQ is called the

deviation (D) of the light in this medium when the angle of

incidence or is MCS'. As SCS' is the original course of the

light, the deviation S'CQ or D is equal to - (MCS' - MCQ)
or D =

(0 $') . This is clear, for the new direction
<j>'

must be equal to (the old direction) + D. Annexed is a table

in which the angles of refraction and deviation are given
that correspond with certain angles of incidence at the sur-

face of a kind of glass whose index of refraction
ju is 1*52,

and again at the surface of water when /*
= T333.

fA=l'52.
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must consider the <' in the above table as the angle of inci-

dence, and $ the angle of refraction.

What will happen when the angle of incidence in water,

for instance, is greater than 48 36'? When $ is nearly
48 36' (Fig. 17) the refracted light just skims along the sur-

face of the water. If be more than 48 36' the light will

be unable to leave the water, and it will be totally reflected.

The angle of incidence (48 36') at which this phenomenon
of total reflection occurs is called the critical angle.

It should be noted that when the path of light is from a

Fio. 17.

dense to a rare medium the relative index of refraction is

less than unity, for djur
=

; in the case where yur
= 1,

dfjL r
= -. The critical angle is easily found for any medium

;

we have merely to give $' its maximum value of 90, and our

formula tells us that

-I; thus sin

=
df*r

= -,
"
the critical angle

= 48 36'.

Total reflection is frequently taken advantage of in the

construction of optical instruments, e.g. the camera lucida

(Appendix, p./^f ) and prism binoculars. Similarly when
the surface of water is viewed in a glass held above the

level of the eye, the silvery brilliance of the surface is due
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to total reflection. In aquariums the surface of the water is

often seen to act as a brilliant mirror.

We see, then, that part at any rate of the light in a rare

medium can always enter an adjoining dense medium, but

that when light in a dense medium is incident at any angle

greater than the critical angle, none of it will leave the dense

medium, as it will be totally reflected at the boundary of the

rare medium.

Image by Refraction at a Plane Surface. Let P (Fig. 18)
be a source of light in a dense medium (//) that is separated

FIG. 18.

by a plane surface AB from a rare medium (JUQ), say air.

Draw PAE normal to the surface. We will consider how the

point P will appear to an eye at E.

Since P is sending out light in all directions, we may
regard PA and PN as two of them. The ray PA will

undergo no alteration, for since PA is normal, both and 0'

must be 0. Draw the normal HNK at the point of

incidence N; then HNP =
0, and if HNQ be so drawn

that
sm
JE^ =

?, HNQ must be <i>'. Under these cir-
sin HNQ IUL

cumstances produce QN to E, then the ray PN will be

refracted as NR. Now, if the figure be rotated round EP as
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axis, PN will trace out the limits of the axial incident cone

and QNK the limits of the emergent cone. Since HNP and

HNQ are equal to the alternate angles QPN and AQN,

o 1 _ sinHNP _ sin QPN _ sin QPN _ QN
fi'

' r

fj!

~
sin HNQ

~~
sin AQN

"
sin NQP PN

As, however, we are only considering the narrow pencil that

enters the pupil of the eye at E, the point N will be very
close to A, and QN and PN may be regarded as equal to QA
and PA

; consequently, to an eye at E the position of the
"P A

virtual image of P will be at Q when QA = ^?PA = .

If, for example, a small object in water is viewed from a

point immediately above it, its apparent depth will be f its

real depth.
As in the case of reflection at spherical mirrors, this

determination of the situation of the virtual image is only
true when small pencils that are nearly normal to the

surface are considered. The formulae for oblique pencils are

more complicated, as two focal lines are formed with a circle

of least confusion between them (see Appendix, p. 111).
Refraction through a Plate. Let us consider how an

object P in air
(JJLQ)

will appear to an eye E in air when
viewed through a plate of glass (JUL) of which the thickness t

is AB (Fig. 19). The incident ray PN will be refracted as

NM on entering the glass, and on again entering the air at

M its course will assume the direction MR. As we are only

considering what will be the position of the virtual image Q
to an eye at E, we can find it very easily by the method of

the last section.

At the surface AN the point P will form a virtual image
i

at Q' such that Q'A = PA. But now Q' may be regarded
l*o

as the object for the second refraction at BM, and

Q'B = Q'A -f t, consequently we have for the distance QB
from the distal surface

QB = Q'B = (Q'A + = PA +
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and since QA = QB -
t,

When /MO =1 and // is denoted by ju, QA = PA - \

and QB = PA 4- -. Thus if
fi
=

|, QA = PA - 1 or the
fj.

A 6

image is formed nearer the plate by ^ of its thickness.

FIG. 19.

It will be noticed that the emergent ray MR is parallel

to the incident ray PN
;

this is invariably true however

many media there may be, provided that they are bounded

by parallel planes, and provided that the final medium has

the same refractive index as the initial medium.

Succession of Plates. It is easy to see that, if any number
of media bounded by parallel planes are in succession, light

on emerging will pursue a course parallel to its original path
if the initial and final media have the same refractive

index pi. Let
jui, ju2 , ju3 . . . denote the indices of the first,

second, third . . . medium respectively, and let 0i, fa, 3 . . .

denote the angles of incidence in these media
;
then

sn
sn
sin
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for, since the media are bounded by parallel planes, the angle
of refraction at one surface is equal to the angle of incidence

at the next. Thus, if there are four media interposed (Fig. 20),

and the angle of emergence into the final medium be denoted

.*. sin = sin b

or, in other words, the final and initial rays are parallel. In

FIG. 20.

the diagram the third medium is represented as less dense

than either of those adjoining it. Consequently, fa is greater

than
^>3

and ^g.

Prisms. Any refracting medium bounded by two plane
surfaces which are inclined at an angle to each other is

called a prism. The inclination of the faces BA and CA
(Fig. 21) is called the refracting angle or the apical angle of

the prism, and is usually denoted by A. The median vertical

plane that bisects the apical angle is called the principal

plane, while the plane CB at right angles to the principal

plane is called the base of the prism. We proceed to
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demonstrate certain properties which are common to all

prisms.

I. When light passes through a prism which is denser

than the surrounding medium, it is always deviated towards

the base.

If the face BM in Fig. 19 were rotated clockwise through
a small angle about B, the plate would form a prism with its

edge upwards and its base downwards
;
the angles of incidence

and of refraction at BM will therefore diminish, and conse-

quently any incident ray NM will on emergence be deviated

away from ME towards the base. If the rotation of BM be

continued, the angle of incidence at M, after passing through
the value of 0, will change its sign and become positive,
when a still more marked deviation of the emergent ray will

occur. Were the face BM rotated counter-clockwise, the

base of the prism then formed would be upwards, and at the

same time the negative angle of incidence would increase,

and hence also the angle of refraction. The deviation of

the emergent ray would in such a case be upwards, towards

the base.

If the prism be less dense than the surrounding medium
the deviation is towards the edge of the prism.

II. As the angle of a prism increases the deviation also

increases.

This follows immediately from the proof given of I.

III. The apical angle is equal to the difference between the

angles of refraction and incidence within the prism.
When the apical angle A is measured in the same

direction as the angle of deviation D,

A =
<//
-

$'.

In all the books on Optics A is said to be equal to </>' + ^', and in

order to get this result a new and special convention is adopted for the

signs attributed to <>' and
\J/, which is never elsewhere employed. Our

convention about clockwise and counter-clockwise rotation when

consistently used, will be found to give results that always hold good.

Let SIET denote a ray of light passing through the prism
BAG (Fig. 21). Draw the normals at I and E, and let the
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angles of incidence and refraction at I be and
<}>',

and the

angles of incidence and emergence at R be $' and ^. Note

that in the figure <j>
and $' are measured clockwise and are

therefore negative, while $' and $ are measured counter-

clockwise and are consequently positive.

In the triangle AIR the angle IRA = 90 -
<//,

and the

angle AIR = 90 + $', for $' is measured clockwise. Now,

FIG. 21.
B

since the sum of the interior angles of the triangle AIR is

180,

RAI + 90 - f + 90 + 0'
= 180

.'. A or RAI = $'
-

'.

and carry,This is universally true whatever signs
whether they be different or both the same.

IV. The total deviation is equal to the difference between

the angles of emergence and incidence less the apical angle of the

prism. D =
ty A.

If the rays SI and TR be produced to intersect at D, the

exterior angle D of the triangle DRI is equal to the two

interior and opposite angles IRD and DIR.
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But IRD =
i/.

- V, and DIE or -BID =
-(<j>

-
0')

.*. D = t - -
(i//

-
0')

= ^ - < - A.

It is clear that the total deviation D is the deviation of

the first surface, (0 0'), added to the deviation of the

second surface, <A $'.

As SIRT is the path of the light, the angle D is positive

(counter-clockwise), and A is measured in the positive direc-

tion also (RAI). If the light were travelling in the direction

TRIS the deviation D would be negative, and then A (or

IAR) would be measured in the clockwise direction. As
i and ^ would then be interchanged, it would be found in

that case also that

D = ^ - - A.

V. When a ray passes symmetrically through a prism, the

deviation is a minimum.
A ray passes symmetrically through a prism when the

angle of incidence is numerically equal to the angle of

emergence irrespective of sign, i.e. when < = -
$.

If
<f> increases, 0' increases also

;
at the same time, how-

ever, \j/' diminishes, and consequently ^ also. But as the

deviation (0
-

0') increases faster than the deviation

^ \j/'
diminishes (p. 36), the total deviation must increase.

If we consider the path of light reversed, it appears that

when the angle of incidence is diminished the total deviation

increases. Hence the symmetrical position is the position of

minimum deviation.

When the prism is in the position of minimum deviation,

^ = - and $' = -
<(>' ;

.-. D = 2A - A, and A = 2^'

sin sin ^ sin i(A -f- D)
^ ij QJ r '

L i.

sin $' sin ^'

"
sin ^A

This is the method used for determining the relative

refractive index of any transparent substance. The angles

D and A can be measured with great accuracy by means of a
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spectrometer, and from these data the value of
ju can be found

by this formula.

The prisms that are prescribed for spectacles are usually

very weak, i.e. the angle A is rarely more than 5, and for

these a simple approximate formula can be given for the

amount of deviation they induce. When $ and ^' are both

very small, sin $ and sin
// may be replaced by ^ and

if/,

and the formula for the position of minimum deviation

D = 2^ - A may be replaced by 2/j.\j/'
A or (/* 1)A, since

A =
2\j/'. This is a most useful formula if only used for

weak prisms when placed in the "
symmetrical

"
position ;

thus, as the value of
jj.

for glass is little more than 1*5, we
find that the deviation produced by such a weak prism is

about half its apical angle.

Image by Refraction through a Prism. We have so far

been only considering the course of light refracted by a

prism ;
when we try to form some idea of the appearance of

an object when viewed through a prism, we meet with several

difficulties that will only be briefly mentioned here.

We have seen that the deviation is not proportional to

the angle of incidence, and as an object of appreciable size

presents many points from each of which light is falling on

the prism at a different angle, it will be seen that the matter

is a very complicated one.

In Fig. 22 an object Pp is supposed to be viewed by an

eye in the neighbourhood of ET, the narrow pencil from P
that enters the eye being represented in the position of

minimum deviation. Clearly a virtual image of P will be

formed at Q, where the prolongations of the refracted rays

intersect. It is obvious that the image will be displaced

towards the edge of the prism, and that it will seem nearer

by one-third the thickness of the prism traversed (p. 40).

Now, if we consider light emerging from p, it is clear that if

it fell on the prism in the position of minimum deviation it

would form a virtual image in the neighbourhood of q. But

an eye at E could not receive this pencil ;
the only light that

would enter it must have had some such initial direction as

px, and the final image of p would be indistinct, for the
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lowest ray of the pencil entering the eye from p will have

undergone a smaller deviation than the uppermost one,

and consequently a confused image of p will

about q'.

FIG. 22.

It will be convenient to give a summary of the appear-
ances of a square object when viewed through a prism in

different positions.

(1) When the plane of the prism is parallel to the plane
of the object, the edge of the prism being upwards.

The image is raised above the level of the object, the

sides being more raised than the mid-part, so that the upper
and lower edges appear concave upwards.

(2) When the prism is rotated about a horizontal axis

parallel to its edge.

The image rises, and the height of the image is either

diminished or increased according as the edge of the prism is

turned towards or away from the observer.

(3) When the prism is rotated about a vertical axis, its

right side being turned away from the observer.

The right margin of the image is raised above its left

margin, so that the right superior and the left inferior angles
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FIG. 23.

are rendered more acute. If the rotation be in the opposite

direction, opposite results occur.

(4) When the prism is rotated about the sagittal line, i.e.

about the visual line of the observer.

The image rotates in the same direction, for, being always

displaced towards the edge, it follows it in its rotation. Let

a point of light be supposed to

fall on the centre of the cir-

cular screen depicted in Fig.

23. When a prism that causes

a deviation R is interposed

with its edge to the right, the

point of light is deflected to

the periphery of the circle on

the right. If the prism be ro-

tated through an angle /o,
the

spot of light will move along
the arc through the angle p.

Consequently, the vertical displacement V will be R sin p,

and the horizontal displacement H will be R cos p. A
prism is frequently ordered by oculists in this way to correct

a vertical and a horizontal deviation of the eye simulta-

neously. Clearly, if V and H are known the required prism

can be found, for R = \/V2 + H2
. Practically, it is found

what horizontal and vertical angular deviations are required

by the patient. Say that they are 9 and 0, then tan 8 = H
and tan $ = V, and a prism of deviation D is ordered such

that tan D = R, and set at such an angle p that

V tan
tan p = = -

H tan

In ophthalmic practice the prisms are so weak that we

may replace the tangents of 0, 0, and D by the angles (of

minimum deviation) themselves.

The reader is urged to verify the statements made in this

section by experiments with a prism, but a full explanation
of his observations can only be obtained in more advanced

treatises.
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QUESTIONS.

(1) Show why a stick that is partly in and partly out of water

appears bent at the surface of the water when viewed obliquely.

(2) It is found that when a plate of glass 7*7 mm. thick is placed
over a microscopic object the microscope must be raised 2 -

7 mm. to

bring the object into focus again. What is the refractive index of the

glass?

(3) If the apical angle of a prism be 60, and the minimum devia-

tion for a certain kind of light 30, what is the refractive index of the

material of the prism for this light ?

(4) A prism of small apical angle (2), with refractive index T5, is

placed in water of refractive index ^. Show that its deviation is only
about one-fourth of what it is in air.

(5) When viewing a distant object, each eye of a patient is found

to deviate outwards 1 44' (nearly V^) while the right eye deviates

above the level of the fixation line of the left eye 1. What two

prisms would entirely relieve this defect ?



CHAPTEE V

REFRACTION AT A SPHERICAL SURFACE

WHEN dealing with reflection at a spherical surface (Fig. 9,

p. 19), we considered the object P to be on the positive side

of the mirror. It would clearly make no difference to the

distance of the image from the mirror if the object were to

the right instead of the left of the mirror, except that the

image Q would then be situated to the right also. Since

optical formulae are universally true whatever values are

given to p, q, and r, when using the formulas it will generally

be found convenient to regard -the direction of the incident

light as the positive direction. Hence PA or p may be

regarded as positive whether measured from left to right or

from right to left, and QA or q will be positive when both

Q and P are on the same side of the surface of the medium,
but q will be negative when Q and P are on opposite sides

of the surface.

When finding any general formula, to avoid error, it is the

simplest plan to use the " Standard Notation." As will be seen

in the following two sections, there is no difficulty in obtaining a

correct general formula when the object lies to the right of the

refracting medium.

We shall in Fig. 24 (and sometimes in future) consider

the object P to be situated to the right of the spherical arc

AK to familiarize the reader with the fact that the direction

in which light is travelling is quite immaterial when dealing
with such questions as these.

Concave Surface of Dense Medium. Let P be an object in
49 E
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a medium whose refractive index is JUQ distant PA or p from

a concave spherical arc, AK, bounding a medium of index rf,

and let CA or CK be the radius (r) of the arc
; then, if CKP

FIG. 24.

be the angle of incidence
ft,

and CKQ be the angle of

refraction ft',

ft __
sin

ft _ sin CKP
fiQ

~~
sin

ft'

~~
sin CKQ

Now, in the triangle PKC

PC - sin CKP _ sin
ft

CK~sinKPC~sinKPC

and in the triangle CKQ

QC!
CK

sin CKQ
sin KQC

sm
ft

smKQO

[Note that as PC, CK, and QC are all measured in the

same direction, the angles CKP, CKQ, and KQC must all be

measured in the same direction, whether positive or negative.

In this case PC and CK are negative, so their ratio is equal
to the ratio of the sines of two positive angles.]

On dividing the first expression by the second, we get

PC
__

sin
ft

sin KQC
QC

=
sin^'sinrKPC"

1

PA - CA p - r
n ^ f\K* - -*"

QA - OA 2
- r

'

^ PK
sin KPQ

"~

/u

'

QK
PK
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This is universally true when p = PA, q = QA, and
r = CA, and when /IQ is the refractive index of the medium
in which P is placed.

When a thin centric pencil is considered, K must be very
close to A, and in such circumstances the distances PK and

QK may be regarded as equal to PA and QA, i.e. to p and q.

We then have for a thin centric pencil

p - r _ fi p
q
- r~

fjto' q
or fiopq

-
fnqr = p'pq

- ppr

On dividing by pqr we have

or

If now the figure be supposed to rotate round the axis

PCA, the extreme ray PK will trace out the limits of the

incident cone from P, and it is clear that all the constituent

rays of this cone will after refraction proceed as if diverging
from the point Q ;

in other words, Q is the virtual image of

P. Indeed, the image of a real object placed in any position
before the concave surface of a dense medium is always
virtual.

When the first medium is air, /UQ
= 1, and we get the

ordinary formula of the books :

q p r

This, however, is neither its simplest nor its most easily
remembered form, but before proceeding further we will

show that this formula applies equally to convex surfaces.

A mathematician would know, from the method of proof, that

the result must be universally true however the signs of p,

q, and r were changed, but we feel that this statement will

not be convincing to all our readers.
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Convex Surface of Dense Medium. As before, let PA = p,

QA =
q, CA = r (Fig. 25), and consider the incident ray PK

having NKP for its angle of incidence, or <
;

if then NKQ be

the angle of refraction, or 0',

i sin sin NKP sin PKG
sin 0'

~~
sin NKQ

"~
sin QKC

Now, in the triangle PKC,

^ 4.u 4.
-

i mm Q sin
and in the triangle QKC, =

[A warning must here be given about signs : note that PC
is measured in the opposite direction to CK, so the angle

FIG. 25.

PKC is measured in the opposite direction to KPC, one

being clockwise and the other being counter-clockwise, and

a similar precaution is necessary about the angles QKC and

KQC. Want of attention to points like these may give an

entirely erroneous formula.]
On dividing the first expression by the second, we get

sin-
QC sm^'sinKPC /uo'sin QPK

PA - CA p - r _ ju'
PK

QA-CA ^7-
Consequently, in the limiting case when K is very near

to A
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p-r ^p p
q-r f*> q

or

The formula for a convex surface is therefore identical

with that for a concave surface, but whereas the latter makes

incident rays more divergent (unless p < r), a convex

surface always makes them more convergent, and this

depends on the fact that in the case of the concave surface

CA or r is measured in the same direction as PA, and in the

case of the convex surface in the reverse direction.

It will be noted that in both Fig. 24 and in Fig. 25 the

image Q is virtual, and hence P and Q are not conjugate in

the sense defined on p. 20. It would be found, for instance,

that if in Fig. 24 the object were placed at Q the image
would be virtual and situated somewhere between Q and C.

As stated before, P and Q are only interchangeable or con-

jugate when the image Q is real.

In Fig. 25 we expect that if PA were increased a little so

as to render the incident cone less divergent, the refracted

ray KE would be parallel to the axis PAG. Now, if KR
were parallel to the axis, QA would be infinite, so let us put

q = oo in our formula.

Then L_^ = ^_ or / = -r
co p r

fjL /io

We see, therefore, that when the source of light is put at

a distance p the emergent rays are parallel. This position
is called the First Principal Focus, and is denoted by F,
while the distance FA is denoted by/' instead of p'. We

have then/' =

Now suppose that the incident rays are parallel, or that

p is infinite,

K- 'uo = t^-^- or </=-/-
q oo r
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The point at which incident parallel rays come to a focus

is called the Second Principal Focus and is represented by
F" in the figure, while the distance F"A is commonly
denoted by /" ; so, replacing q' by its technical symbol, we

M -
Mo

It should be noted that /" has the same sign as r,

and indeed F" is seen to be on the same side of the

surface as C
; F', however, is on the opposite side, as is

obvious from the expression for /' being preceded by a

negative sign.

Now, since the effect of a concave surface is to render

incident rays more divergent (unless p < r) t
it will be clear,

FIG. 26.

on considering refraction at such a surface, that in order that

rays may emerge parallel they must have been initially con-

verging towards the point F' (Fig. 26). Consequently the

First Principal Focus F' in this case is virtual. Again, the

Second Principal Focus F" is also virtual, as incident parallel

rays (the spaced and dotted lines) after refraction diverge as

if they were proceeding from F". It will be noticed that

here also/" has the same sign as r, while/' has the opposite

sign.

Since ^L ,=-7^-, /"-r=-/'
p.
- ^ M -

MO
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and we see, when the vertex of the spherical surface is

denoted by A, that both in Fig. 25 and in Fig. 26

F'A - CA = AF' or -F'A, or/" - r = -/'.

Note that both F' and F" are real when the dense

medium presents a convex surface.

Again, it is clear that

= - for --=
/HO fi fio HQ ILL

-
JUG

We can now express our formula in its simplest form,

for on dividing

V_W> = H'-VQ
by

P'""
weget

q p r r

f f"J- +^ = 1
P <1

f f"
This form, + = 1, is analogous to the expression we

have already found for reflection at spherical surfaces
; then,

indeed, there was no difference between the positions of the

first and second principal foci, as they both coincided in one

f f"
point. It will be found that

y- + = 1 is much the easiest
P <l

form to remember, especially as we shall find that exactly
the same formula holds good with lenses.

Ex. (1). The refractive condition of the human eye may
be very closely approximated by a convex spherical segment
of radius 5 mm. bounding a medium of index f . Where
will its focus be for incident parallel rays, and what will be

the position of its First Principal Focus ?

Here the first medium is air, so /uo
= 1 and // = J,

/ =
,

- ==
-y f = 20 mm.

and /' = -?/" = -|(-20) = 15 mm.
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So F' is situated 15 mm. in front of the cornea, and F" 20

mm. behind it.

If the focussing mechanism were not called into play,
where would the image be formed by such an eye of an

object 16'5 cm. distant ?

/',/"_! ./"_*-/' Pf"
-f- x . . ui q -j,i

P q q p p-f
Here p = 165 mm.

165 x -20 -330 00-

Presuming the curvature of the cornea and the other con-

ditions of the eye to be normal, we should infer that if it

could not see an object distinctly at a greater distance than

16*5 cm., it must be 2 mm. longer than normal. We have

just found that a human eye that can see very distant objects
like stars distinctly must have its retina 20 mm. behind the

cornea.

Such problems are delightfully simple and easy, but mis-

takes are frequently made when the object is in the dense

medium. By attending to the rule that HQ is used to indi-

cate the index of that medium in which the object is situ-

ated, all difficulty will be avoided. We will give an example
of the way such questions should be treated.

Ex. (2). There is a speck within a spherical glass

ball (r
= 4 cm.) distant 2 cm. from one surface. Where

will its image be formed as seen from either side when

fi
= 1-5 ?

The first point to remember is that the object will form

an image, whether real or virtual, irrespective of the presence
or absence of an eye to see it. Consequently, neglect the

position of the observer, except in so far as it determines

which surface of the sphere is being considered, and use the
" Standard Notation

"
for signs.

In this case the object P is in the dense medium, so
JUQ

= 1'5, and the final medium is air, so p'
= 1. Suppose the

ball to be so placed that the surface nearest to P is to the

left
;

call this side A, and the distal side B.
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A. Then PA or p = -2, and since TI = -4,

and

The image is virtual, within the glass, 1*6 cm. from A.

B. Here p' or PB = 6, and ra = 4
;

so now/2
f

or -TL- = 12, while /2
" = -8

The image is virtual, and is formed at the distance of the

diameter from B, that is at the surface A.

In this case, as the second medium is to be regarded as

the refracting medium, it is obvious that at the surface B the

air presents a concave surface, and the incident divergent
cone from P is rendered less divergent, for QB is greater

than PB. Indeed, in every case (except when p < r, as in

case A) the effect of refraction at the concave surface of a

rare medium is to increase the convergence or diminish the

divergence. This can easily be remembered by considering
the case of a biconvex lens : convergence occurs at the first

surface, of course, because refraction occurs at the convex

surface of a dense medium
;
and this convergence is increased

by the refraction at the second surface, which presents the

concave surface of a rare medium (air). When the rare

medium presents a convex surface, divergence results with-

out any exception.
Geometrical Construction of the Image. The construction

is almost exactly the same as that we employed before, when

dealing with a spherical mirror. The only difference is due
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to the fact that now F' and F" no longer coincide, but are

situated on opposite sides of the refracting surface.

As before, we give two methods to find the image of a

point not on the principal axis, and one method for a point
that is on the principal axis. As we are assuming that only
centric pencils contribute to the formation of the image, we

FIG. 27.

draw the principal plane HOH" tangential to the spheri-
cal surface at its vertex (Fig. 27). AB represents the

object, BOG the principal axis, F' and F" the first and

second foci of the spherical refracting surface whose centre

isC.

(A) Point not on the Principal Axis.

(1) Draw ACa through the centre C. Through A draw
a line parallelto the principal axis, meeting the

principal plane at H. Draw HF"& through F" to

meet the line ACa in a.

Then a, the point of intersection of HF" and AC
produced, marks the position of the image of the

point A.

(2) (Dotted lines.) Draw ACa as before through the

centre C; from A draw a line through the first

focus F' to meet the principal plane at H'. Draw
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H'a parallel to the principal axis until it meets

ACa in a.

The point a is the image of the point A.

It would appear, then, that the incident diverging cone

HAH' becomes, after refraction, the converging cone HaH'.

This is not strictly true, for the line AH does not represent

any ray that is actually incident on the refracting surface
;

but we are justified in asserting that a small centric pencil
from A will come to its conjugate focus at the point of

intersection of HF" and AC produced. Again, we know
that all rays that pass through F', such as AF'H', must,
after refraction, proceed in a direction (H'a) parallel to the

axis.

(B) Point on the Principal Axis. (Spaced and dotted

lines.)

Through B draw any line BDH" cutting the first focal

plane in D and the principal plane at H"
; join DC and draw

H"6 parallel to DC, cutting the principal axis in &.

Then the point b is the image of the point B.

The reason of this construction is obvious from the pro-

perty of the focal planes described on p. 26. Light from

any point on this plane will, after refraction, travel in rays

parallel to that axis on which the point lies. Now, DC is,

of course, the axis on which D lies, and consequently the

incident light ray DH" must, after refraction, take the

direction H'7> parallel to DC.
Size of the Image. In just the same way as we found the

height of the image formed by reflection at a mirror, we can

find - in this case.

(1) Noting that la is equal to OH', we find, by similar

triangles, that

i = fa_ = OH' _ FO _ F'O /'
o

~~
BA

""
~BA

~~
FB

""
F'O - BO "f^^p

(2) And as BA is equal to OH,

!=!?L JOL F"fr _F"0-50
o BA

~
OH " FO ~

F'O
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Exactly the same construction is used when the refracting

surface is concave, in which case F" with C would lie on the

object side of the refracting surface, and F' would lie on the

opposite side. It should be noted, also, that when the refract-

ing medium is dense and presents a concave surface the

image is erect and virtual, but when the surface is convex

the image is inverted and real as long as p is greater than /' ;

if p =f the refracted rays are parallel, and if p </' they
are divergent. We will give one or two examples where

JJLQ
= 1

(the first medium), and fi
= f.

Ex. (1). A refracting surface presents a convex surface of

radius 4 cm., and at a distance of 8 cm. in front of it is

placed an object 5 cm. high. Give the position, the character,

and the height of the image.
We must first find the foci

=M-=--= =12 cm.

and /" = - /' = -|(12) = - 16 cm.

The image is therefore formed 32 cm. on the object side of

the refracting surface, so it is virtual.

I 12_
o f'-p 12-8""

or if we use the second formula

i_f"-q_ -16 -32
~o~~f~ -16

The same result must be obtained in either case : the

image is erect because - is positive, and three times higher

than the object. Consequently, the height of the image is

15 cm.

This is a case in which p is less than/', and the refracted
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rays diverge, though less than the original incident rays, so

a virtual image is formed at a greater distance than that

of the object.

When speaking of the effect of concave refracting surfaces,

we said that incident rays were always made more divergent

unless p were less than r. As an example, we will now
take a case where p is less than r.

(2) An object 5 cm. high is placed 3 cm. in front of a

concave refracting surface of radius 4 cm. Where will the

image be formed, and what will be its height ?

In this case, as the surface is concave r is positive ;
so

The image is therefore situated 3*2 cm. in front of the

surface, or 2 mm. further off than the object ;
in other words,

the divergent cone from each point of the object is made
rather less divergent,

and

So the image is virtual and erect, and as the object is

5 cm. high, the height of the image is 4 cm.

Graphic Method for Refraction at a Spherical Surface.

The graphic method that we employed for spherical mirrors

can also be very conveniently used in this case. As an example
we give in Fig. 28 the method as applied to the normal human

eye. The complex system of the eye with its cornea and lens

will be shown on p. 102 to be almost exactly equivalent, from

an optical standpoint, to a single refracting convex spherical
surface of radius -5'25 mm., with /' or F'H equal to

+ 15-54 mm. and/" or F"H equal to -2079 mm.
On the horizontal straight line PH we mark off the

point F' so that F'H = 15*54 mm., and from F' we raise a

vertical line such that FT = 20*79 mm., for we consider
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lines measured from left to right and from below upwards
as positive, and those in the reverse directions as negative.

Where will the image be formed by such a refracting system
of an object 8 cm. distant ?

Make PH = 8J cm., and join PF" and produce it to

cut HQ in Q. Measure QH; it is found to be 25-56 mm.
The image is therefore formed 25'56 mm. behind H, which

denotes the cornea. Now, the " standard
"
eye that can see

F"

FIG. 28.

very distant objects distinctly must have its retina at a

distance of 20*79 mm. from its cornea
; suppose that a cer-

tain person could not see objects further off than 82*5 mm.
(this case), then his retina must be 25*56 mm. from his

cornea, or his eye must be 4*77 mm. too long, if his eye
were otherwise normal.

The size of the retinal image is given by our previous

f , i F'H 15-54
formula, - = ^^ =

^757. ,
so that the image is inverted

and real, and a little less than one-fourth of that of the

object.

Further, our diagram will tell us what glass would correct

this eye for distance. Spectacles should always be worn in

the first focal plane of the eye, i.e. about half an inch in front

of the cornea, so that F' marks the position of the correcting
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glass, and it must be of such strength that parallel rays from

a distant object should form their image at P. This means

that the second focal distance (/") of the correcting glass for

distance must be equal to PF', which is found by measure-

ment to be 67 mm. approximately. Now, a lens of which
1 000

/" = 67 mm. is one of power ^=- y
or nearly 15D, as

will be shown in the next chapter. Indeed, if preferred, this

division sum may be done graphically in this way. Draw a

line F'A 50 mm. long in any direction that makes an acute

angle with F'P (Fig. 28); mark off S on PF', making SF'

equal to 20 mm. Join AP and draw SD parallel to AP ;

then F'D in millimetres gives the power of the correcting

glass in dioptres (see p. 80). For of course

F'D _ F'A . F'D _ - 50 _ -1000 - -

SF'
"
PF"

l 'e'

"20
=

"67" ~67~

Note that both F'D and F'A are measured in the negative
direction.

If the eye were 3'23 mm. too short, where should the

object be to form a distinct image on the retina ?

Make QH -17'56 mm. (i.e. -2079 + 3-23). JoinF'Q,
and produce to meet the base line in P (Fig. 29). If accu-

rately drawn, P will lie 84'46 mm. to the right of H. This

means that PH is negative ; thus, unless very great focus-

ing power were used, the eye would not be able to see any
real object distinctly, for light would have to converge as if

towards a point 8446 mm. behind the eye in order to come
to a focus on the retina. It is unnecessary to determine the

size of the image, as we have seen that no real object could

be seen. The correcting glass must have /" equal to PF',

which by measurement we find to be - 100 mm.

*-=.+
Or if we wish to do this division graphically, we draw F'A
50 mm. long in any direction, making an acute angle with
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FP. We then mark off S between P and F', making SF
equal to 20 mm. Then by joining PA and drawing SD

parallel to it, cutting FA in D, we measure FT). We find

A
FIG.

that F'D = 10 mm., so his correcting glass is 4-10D. The

graphic method is given in this case to show the generality

of the method, though here there is no special advantage in

it. As before, we have

F'D F'A F'D 50

PF"
l 'e ' -20~ - -

J ~ -1000
-100

*Eccentric Pencils Focal Lines. In the preceding sec-

tions we have been considering the refraction of thin centric

pencils, of which the central ray traversed the centre of the

refracting surface. We will now take the case of a thin

eccentric pencil that does not pass through the centre.

Let be a luminous point on the axis of the concave

surface whose centre is at C (Fig. 30). The thin pencil

POQ will be refracted in the direction RR', so that the

refracted rays, if produced backwards, will meet at FI, and

will cut the axis in a line in the neighbourhood of F2,
so

that the refracted pencil will be astigmatic. If the incident

pencil were of a pyramidal shape, the prolongations of the

refracted rays would form a figure something like Fig. 15,

only in the case shown in Fig. 30 FiP is greater than F2P.

A similar sphenoid will be formed between the secondary
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and primary focal lines, but the lateral surfaces of the

refracted beam will now intersect in the secondary focal line

at F2 before the final edge of the sphenoid is formed at Fx ,

the primary focal line. If OP were greater than ^(FxP),
F2P would be greater than FX? (see Appendix, p. 116); in

such a case the refracted beam would take exactly the form

represented in Fig. 15.

The formulae for the lengths FiP or Vi, and for F2P or v2,

when the source of light is at a distance OP or ut will be

merely stated in this place

/u cos
2

ft' _ cos2
ft __/*__!_ sin (ft

-
ft')

r sin
ft'

FIG. 30.

The proof of these formulae will be found in the Appendix,

pp. 114-116.

Conversion of Formulae of Refraction into those of Reflec-

tion. On p. 35 it was stated that -. , { or )= ^, i.e. the
sin

ft \ HQ} V2

ratio of the speed of light in the first medium to its speed in

the second medium. Now, when reflection occurs at a sur-

face, it is clear that the speed of the light is unchanged in

absolute amount, for it is in the same medium, but its direc-

tion is reversed
;
in other words, the sign is changed, so that

7
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for reflection we must consider V2 as equal to Vi. We
'

"XT' ~\T

have therefore or ^ = ~ = 1, so that every formula
/"o V 2

- V i

applying to refraction must apply to the similar case when
reflection is considered, if we simply replace the expression

i

for the relative index of refraction by 1. Indeed, this

/*o

is one of the best tests we have to determine whether a for-

mula for refraction is correct or not. Eeplace // by - 1 and

IHQ by 1, and see if the correct formula for reflection is given.

We will give a few examples to illustrate the generality of

this method of conversion.

Refraction.
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becomes, when r is made infinite

COS2
ft _/f_ _ 1 _ Q

U V% U

COS2 ft'
or #1 = UM a-1- and t^ = M^

cos^ft

These are the distances of the primary and secondary
focal lines when a thin oblique pencil undergoes refraction

at a plane surface, fj, denoting the relative index of refraction

(Appendix, pp. 111-113).

QUESTIONS.

(1) Assuming that the human eye is a simple refracting system, of

which the first focal distance is 15 mm. and the second focal distance

20 mm., where would the image be formed, and what would be its

height, if an object 6 mm. high were at a distance of 150 mm. ?

(2) What curvature must be given to the refracting surface when

/*
= J in order that the previous object at a distance of 150 mm. may

form a real image at a distance of 20 mm. ? What would be its

height ? Compare the size of the retinal images in the axial myopia
(the first case in which the eye is long enough to form a distinct

image of the object) and the curvature myopia (the second case).

(3) If the back of a glass sphere Q* = f) be silvered, where will be
the image that is formed by one reflection and one refraction of a

speck that is halfway between the centre and the silvered side ?



CHAPTER VI.

LENSES.

ANY refracting medium bounded by two curved surfaces

which form arcs of spheres is known as a spherical lens;

the axis of the lens is the line joining the centres of the

spheres, and that part of the axis lying between the two
surfaces gives the thickness of the lens.

Thus in Fig. 31 the surface A is the arc of a sphere that

has its centre at Cb and the surface B is the arc of another

FIG. 31.

sphere that has its centre at C2 : the axis of the lens is the

line joining Ci and Cg, and the thickness of the lens is the

length of the line AB. These are the only definitions we
shall require for the present. It will be apparent that if one

of the surfaces be plane, it may be regarded as a spherical

surface of which the radius is infinite.

Thin Lenses. Thin Axial Pencils. The conjugate focal

distances of an axial pencil of a thin lens can be very

easily determined from the formula that we have already
found for a single spherical surface. It should be noted that

the term "
centric

"
is no longer equivalent to the term

"
axial," as an oblique pencil that passed through the centre

of one spherical surface would not pass through the centre of

68
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the other surface unless they coincided (see p. 84). We
shall eventually determine the position of what is called the

Optical Centre of a lens, and discuss its properties; at

present we are only concerned with axial pencils.

Let P (Fig. 31) be a luminous point on the axis of the

lens, and let Qi be the image of P due to refraction at the
r

first surface A, and let be the relative refractive index
Mi

between the first medium and the second medium (e.g. air

and glass). When p = PA, qi
= QiA, and when rx is the

radius of the first surface,

qi p n
The light from P, after traversing the first surface A, will be

travelling in the direction towards Qi. On emerging at the

second surface into the original medium (JUQ),
refraction again

takes place, and the relative index is now ^? . As the lens is

considered to be of negligible thickness, QiB may be regarded
as equal to QxA or qim

Eegarding, then, Q! as the source for the second refraction

at B, of which the radius is r2, and putting q for QB, the

distance of the final image, we have
i f

JUQ JH fJ.Q fj.

q qi rz

On adding (a)
t_^P = ^Jfo
Mo fto , t

we get =
(ju

This is the standard formula for a thin lens
;
when the

lens is in air (as is almost always the case) /^ = 1, and we
can suppress the dash and write

1 1 T /l 1\=-!( )
. . . . (c)

q p \n r2J

To find the First Principal Focus (F
r

),
as before, we make
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the emergent rays parallel, or we make q infinite
;
we then

have - = 0, and writing /
'

for this special value^ of p}
we

get

To find the Second Principal Focus (F"), or the focus for

incident parallel rays, we make p infinite
; so, substituting

/" for this special value of q, we get

/"

We see that /' = -/", which is always the case when the

initial and the final media are the same
; so, on substituting

these values in (c), we find that

111 /" /"= or
' *. = l

q p f" q p

and finally our old formula

+^=1 (A)
p q

[It may be here noted that when thick lenses are con-

sidered, if the thickness be denoted by t, the term

must be added to the expressions for ry, and subtracted from

that for
^7

.

Thus

and

These expressions give the focal lengths correctly, and for

some purposes this is all that is required, but they do not
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enable us to determine the position of F and F". We shall

find later (p. 91) that when a thick lens is considered, there

are two Principal Points towards which the two focal dis-

tances must be measured respectively.]

Let us suppose that the lens in Fig. 31 is of negligible

thickness and has for its radii of curvature rx
= 2 cm. and

ra = 4 cm. What will be its focal distances when /u
= 1*5 ?

1/1

/./' =f cm. and /" = f cm.

Consequently, if a source of light were placed at 2| cm.

distance from such a lens, the emergent rays would be

parallel. If, however, the incident rays were parallel, as for

instance from the sun, they would converge to a focus 2 cm.

on the far side of it, as the negative sign shows that the

Second Principal Focus is behind the lens.

Ex. (1) If an object were placed 24 cm. in front of such

a lens, where would the image be formed ?

Here p = 24, and we wish to find the corresponding
value of q.

f+r =l ,r =P^L or q= *r
p q q

- p p-f
' 24(-) 24 x 8

80 2= 2T^|
=
-~6r~

= m -

The image would therefore be real, and it would be formed

3 cm. behind the lens.

(2) An object is placed 24 cm. in front of a concave lens,

of which TI = 2 cm. and ra = 4 cm. (n = 1*5). Where
will its foci be situated, and where will the image of the

object be formed ?

This lens has the same curvature as that in (1), but in

the reversed direction, so/' will be found to be f cm. and

Hence q or = = 24 cm.
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The image in this case is virtual, and is formed 2*4 cm.

in front of the lens.

It should be noted that in all converging lenses /' is

positive (i.e. F' is on the same side of the lens as the object

P) and /" negative, and they both are real, whereas in all

diverging lenses /' is negative (i.e. F' is on the side opposite
to P) and/

"
positive, and they both are virtual. Moreover,

all converging lenses are thickest in the middle, whereas all

lenses which are thinnest in the middle are diverging in

function. The reverse of these statements is not true,

although it is frequently alleged to be so
; e.g. a lens can be

constructed that is thickest in the middle and yet be diverg-

ing in function.

When a lens is converging in function, the image is real

and inverted (Fig. 32) or virtual and erect (Fig. 33), accord-

ing as the distance of the object is greater or less than the

first focal distance of the lens. With diverging lenses the

image of a real object is always virtual.

In Figs. 32 and 33 the object is represented to the right
of the lens, and therefore F' must be on the same (the

incident) side, and as the lenses are of the same focal length

(/' = 4 cm.) we make OF' in each case equal to 4 cm. In

Fig. 32 the object AB is placed 14 cm. from the lens, so the

image ab will be real and inverted, and it will be situated at

a distance of 5'6 cm. on the other side of the lens,

for .

p~f 14-4

In Fig. 33 AB is placed 3 cm. from the lens, and the

image ab is therefore virtual and erect, and it is 12 cm. from

the lens on the object side.

P -/ 3-4
Geometrical Construction and Size of the Image. The

image is drawn '

by the same method that was employed in

constructing the image formed by refraction at a single

spherical surface (Fig. 27, p. 58). Three alterations are,
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however, necessary : (1) the principal plane HOH' must be

drawn through the centre of the thin lens instead of tangen-

tially to its surface
; (2) OF" must be made equal to FO

;

and (3) the point must be regarded as taking the place
of C, which is no longer required (cf. Figs. 32 and 33).

FIG. 32.

When the lens is symmetrical, as in Fig. 32 and 33,

O is the optical centre of the lens, and, clearly, any ray of

light that traverses proceeds on its course without devia-

tion, for any refraction that it may undergo on encountering
the first surface of the lens will be reversed on emerging
from the second surface. It is clear from Fig. 32 that the

ray AOa cuts the lens at two points such that the tangents
at the points of entry and emergence are parallel, so that

the light traverses the lens as if it were a plate with parallel

sides.

(A) Point not on the Axis. The line AO is drawn and

produced to a. (1) AH is drawn parallel to the axis, meet-

ing the principal plane in H
;
HF" is then drawn through F"

meeting AOa in a (Fig. 32) ;
or (2) F;A is joined and pro-

duced to meet the principal plane in H (Fig. 33), and from

H the line Ha is drawn parallel to the axis, meeting OAa
in a.



74 GEOMETRICAL OPTICS

(B) Point on the Axis.From B a line BDH' (Fig. 32) is

drawn at any acute angle cutting the first focal plane in D
and the principal plane in H'

;
DO is then drawn, and H7> is

drawn parallel to DO.
From Fig. 32 we see that

F"Q - t>0 _f";- q
F"0 /"

FIG. 33.

F'O

and from Fig. 33 that

i _ la _ OH _ F'O

o
~~
BA

~
BA

"
F'B

~
F'O - BO ""/'

- p

Therefore when F'O or/' = 4, BO or^ = 14, and when BA
is 8 inches in height, as in Fig. 32,

f 4
i or la = ^T- BA = Tf-p 4-148= -3-2

But if BO or p = 3 and BA = 2, as in Fig. 33,

^2 = 8

f f"
The formulae J- + = 1

p q o j -p j
thus shown to be universally true for refraction at a single
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spherical surface, for lenses, and also for reflection, when it

is remembered that in the case of a mirror F' and F" coin-

cide in one and the same point F.

Figs. 32 and 33 show, however, another expression for

- that is always true in the case of lenses, for ^-r- = ^^ = -
1>A JhJU p

It is, however, rarely necessary to pay any attention to this

relation, and it is much easier to remember the few formulae

that are universal, which are given above.

There is, however, one important point to which atten-

tion may be particularly directed, as it affords the explana-
tion of certain facts which are obvious enough if it be borne

in mind, but puzzling otherwise. It is this, that the angle
BOA subtended by the object at the centre of the lens is

always equal to the angle bOa subtended by the image. The

application of this fact may be illustrated by the following

example : the diameter of the sun subtends a visual angle of

31' : what is the diameter of its image as formed by a lens of

1 m. focal length ? (tan 31' = 0'009.)

In this case, of course, an inverted image is formed at

F", and

la or i = /" tan 31' = - 1000 X 0'009 mm. = - 9 mm.

In the case of a mirror, it may be noted that the angle
bOa is numerically equal to the angle BOA, as may be at

once seen by drawing the lines aO and AO in Fig. 11.

Then if bOa be denoted by a, BOA = a, for it is measured

in the reverse direction to bOa, so that i= q tan a. When
distant objects like the sun or the moon are observed with

a reflecting telescope, the incident rays are parallel, and the

size of the image formed by the mirror is given by the

expression

i = -/ tan a.

Ex. (1). A camera of 6 inches focus shows a distinct

image 1 inch high of an object when the ground-glass screen

is 6*6 inches away from the lens. At what distance is the

object, and what is its height ?
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Here an inverted image is formed 6*6 inches behind the

lens, so

:.p or **~*s = --g- g , c = 66 ins., i.e. 5 feet 6 ins.
'

q = -6'6 ins.

**~*s = --g- g , c
q j o'b + o

A i /"- - 1 -6 + 6-6 1
and

o
=
V' ^T -=6-

=

~io
/. = 10 ins.

Ex. (2). The same camera shows an image 1 inch in

height of a man who is 6 feet high. How far off is he ?

i f -16_ v m* _ __ _
o~f-p 72 ~G-p

:.p
- 6 = 6 x 72 ins. or p = 36J feet.

Ex. (3). If in repairing a bicycle reflex lamp the plane
mirror is placed at the focus of the convex lens, will it act

in the desired way ? No. The light from a distant approach-

ing motor that is incident upon the lens will converge to its

focus. From this point on the mirror the reflected light will

fall again on the lens, and will emerge as a parallel beam by
its previous path. It will therefore only return to the

source of light, and hence will give no warning to the driver

of the car.

It is for precisely the same reason that the pupil of the

eye appears black. It is really red when incident light

falls upon it
;
but the observer necessarily puts his head in

the path of the incident light in one direction, so that no

light is returned in that direction.

In order to see the back of the eye, an ophthalmoscope is

used, which consists essentially of a small mirror with a

central perforation, through which the surgeon looks at the

eye of the patient. Light is reflected by this mirror into the

patient's pupil to the red background of the eye, and return-

ing by its previous path to the mirror is received in part by
the surgeon's eye behind the aperture, so that the pupil

appears of a bright reddish colour to him. If the retina of

the patient be not situated at the focus of his eye, the light
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on its return from the retina will no longer emerge as a

parallel beam, but either as a convergent or divergent pencil,

according as the retina is behind or in front of the focus.

In such cases, especially when the pupils are widely dilated,

they will appear to glow with a ruddy light, even to the

unaided eye. For a similar reason, the unsatisfactory reflex

lamp may be made efficient by moving the plane mirror a

little nearer the lens, so that it is just within its focal

distance.

It has been shown that in Fig. 33 the image ab is four

times the height of the object AB, but this does not neces-

sarily mean that the apparent size of this virtual image, to

an eye that perceives it, is four times the apparent size

of AB.

Magnification. The apparent size of an object depends

upon its distance from the eye that perceives it. If we

regard the eye as a simple refracting medium formed of a

single spherical surface of radius 5*25 mm., as on p. 61,

the centre of this surface will represent the nodal point (K)
of the eye 5'25 mm. behind the cornea. Now, an object BA

FIG. 34.

(Fig. 34), at a distance KB from the nodal point, will sub-

tend at K the angle BKA or 9. This is called the visual

angle. The apparent size of BA is evidently determined by
T> A

tan or .- It is obvious that tan 6 could be increased

indefinitely by diminishing KB indefinitely. In other words,
the apparent size of an object could be indefinitely increased

by bringing the eye indefinitely close to it. The eye, how-
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ever, is incapable of seeing an object distinctly which lies

within a certain distance. The distance KB of this punctum

proximum, as it is called, from the eye varies in different

individuals, and increases with age, so that it is impossible
to assign to it any definite value which shall be applicable to

all cases. If I denote the least distance for the individual

eye considered, then the greatest value that tan 6 can actu-

ally have is by making KB equal to I, when tan 9 =
-j-

or y
It is customary to assign an arbitrary value of 10 inches to I.

If, now, a convex glass be placed as in Fig. 33, with the

object BA within its first focal distance, and the nodal point
of the observer's eye be at K, a virtual image la will be

formed at a distance "Kb from the nodal point. Then if 0' is

the visual angle subtended by la at K, tan 6' =
T^T

or ^.
But we have already found that the maximum size of the

object as seen by an unaided eye is given by tan 6 or
j-

The magnification M of a convex glass must therefore be the

relation between tan 0' and tan 9.

_ tan 0' _ i I _ l_ /l-J^JL/'i L^\~
tan

~~
K6

'

o
~
Kl

'

/"
~
Kl\ f)

When a convex lens is used as a magnifying glass, the

image is always virtual, and it therefore lies on the same

side of the glass as F', so the fraction ~ is always positive

f'

~
FO =

OF"')'
^ *S C*ear k m ^e a^ove exPressi n

that M is increased by making KZ> as small as possible, and

by increasing the value of q. But K& cannot be made

smaller than I (say, 10 ins.), or the image would not be seen

distinctly, and as "Kl = KO + 01, say, d -j- 05, there is a

limit to the value of 01. The distance d of the lens from

the nodal point of the eye cannot be much less than half an

inch, so we must make 01= 9J inches in order to get the maxi-

mum magnifying power out of a lens employed in this way.
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In the case above, with a lens of 4 inches focus, with the

object so placed as to form a virtual image 9J inches from

the lens, the greatest amount of magnification will be

obtained, viz.

M =

There is another way in which a convex lens may be

used as a magnifying glass, viz. when the object is placed in

the first focal plane of the lens (Fig. 35). HOH' is the

FIG. 35.

principal plane of the lens, which it is unnecessary to indi-

cate, and the object BA is placed in the first focal plane, so

that the incident cone of rays from B (H'BO) will, after

refraction, emerge as a beam parallel to the axis, while the

incident cone from A (OAH) will emerge as a beam parallel

to AO. If, now, an emmetropic eye (or an eye adapted to

see very distant objects) be situated behind the lens, an

image of BA will be formed on its retina. It is clear that

in this case the apparent size of BA will be independent of

the position of the eye, for its size depends on tan BOA or

tan 0". If, however, the eye be situated behind the point X,
it is obvious that it could not see the whole of the object, as

only rays from the central part of BA would enter the eye ;

in fact, on increasing the distance of the eye from the lens

the field of view would be diminished, but there would be no

alteration of the magnification of that part that was seen.
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As BA is in the first focal plane, tan 0" =
j,

and so the

tanfl" o I I

magnification M in this case is - s = ~f
.- =

JF .

tan / o /
Our lens of 4 inches focus, used in this way, would only

give a magnification of
j,

or -^ = 2*5, but it would be less

fatiguing to the eye.

On comparing the magnifying power of a convex lens

used in these two different ways, we see that in the first case

it is 1 -f jn and in the second case it is
j,

or
,
^. There-

fore, if d be less than /' the first method gives the higher

magnification, and vice versd.

Graphic Method for Lenses. A method similar to that

illustrated in Figs. 28 and 29 may be employed for finding

the position and the relative size of the image formed by any
lens. Fig. 28, when F"F' is made equal to F'H, will represent

the construction necessary for a convex lens whose first focal

distance (/') is indicated by F'H, whereas Fig. 29 if inverted

would give the construction for a concave lens when F"F' is

made equal to F'H, its focal distance. Such methods will,

however, be seldom found to be of practical use, as we have

vf
"

i f
such simple formulae as a = *J ^ and - = -^ ready to

P~f o f - p
our hand for the solution of questions like these.

Power of a Lens. Dioptres. In a previous section we
used the expression

"
magnifying power," and we saw that

itivaried inversely as/' ;
we have seen, too, that strong lenses

with strongly curved surfaces had short focal lengths. We

are therefore quite ready to admit that -p is an adequate
j

measure of the power of a lens. The unit universally adopted
is that of a lens of one metre focal length, which is called

a dioptre, and is denoted by the symbol D. We know that a

convex lens of 25 cm. focal length is four times stronger

than one of 100 cm. focal length. This is very simply

expressed by calling the former lens +4D and the latter
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+ 1D. Note that it is the first focal length, /', that is

considered and that determines the sign of the lens. We
give an example or two, so as to make this nomenclature

quite clear.

What is the power of the following lenses in dioptres ?

two concave lenses of 10 cm. and 20 cm. focal length

respectively, and one convex lens of 80 cm. and another

convex lens of 22*5 inches focal length.
The first focal distance of a concave lens is negative,

so in the first case /' = -10 cm., or ^ metre;
y,

is

then 10D
;
in the second case/' = 20 cm. = -

5 metre,

so
, is -5D.

The first focal distance of a convex lens is positive, so

if /' = 80 cm., the power of the lens in dioptres is J^f, or

+ 1-25D.

In every case the dioptric power is given by -j,
in metres,

100
or

j-r-
in centimetres. When we have /' given in inches,

we must convert it into metres. As 39*37... inches are

22 '5

equivalent to one metre, 22 '5 inches are equivalent to QQ .Qf
-

t>y 'of

1 39*37
metres, so^,in metres is = 1*75. The dioptric power

J Z&'d

of this last glass is then +175D.
Thin Lenses in Juxtaposition. A succession of thin lenses,

such as that shown in Fig. 36, has practically the same effect

as that of one lens whose power is represented by the sum of

the dioptric strengths of the components of the system. Let

us suppose that the first lens (a meniscus) is -I- ID, the second

lens H-10D, and the third lens -9*5D; the sum of the

dioptric strengths is +1 -f 10 9*5, or +1'5D. Conse-

quently, the system will be practically equivalent to one

lens of 4-l'5D. This illustrates the extreme simplicity
that results from denoting lenses by their power instead of

by their focal length. If the thickness of the lenses, or of

O
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their combination, had to be taken into account, a correction

would have to be added, which will be explained when

dealing with cardinal points.

FIG. 36.

When a space separates the several lenses of the system,

the rule just stated does not apply ;
for such a case the.

reader is referred to p. 91.

Optical Centre. We have frequently made use of the

term "
the centre of a lens," and the reader most probably

,o thinks that it is equivalent to the mid-

\ point of the thickness of the lens. It is

so in symmetrical biconvex or biconcave

lenses, but it may be outside the lens

altogether, as in Fig. 37. The optical

centre of a lens may be defined as that

point in which the line joining the ex-

tremities of any parallel radii of the two

bounding surfaces cuts the axis.

In Fig. 37, BACiC2 is the axis, and

and C2J2 are two parallel radii.
FIG. 37.

The line joining J2 and Jb if produced, cuts the axis in 0,

which is then by the definition the optical centre.

The point is a fixed point, the position of which

depends only on the lengths of the radii and the thickness

t of the lens
;
for by similar triangles

Also

C2O
ri - Cl Tl

~ A - A
^
-
0,0

=
ra -OB

~
OB

OB - OA AB = r2 -"OB OB ra
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So OB= ^- and OA = -^~ (a)r2 - n r2 - T*!

Consequently, in biconvex and biconcave lenses, when either

TI or r2 is negative, r2 - n > r^ so AB > OB
;

in other

words, is within the lens. The optical centre has the

following important property : any incident ray, such as PJ1}

passing through the lens so that its direction while within

the lens passes (either actually or virtually) through the

centre will on emerging from the lens, have a direction

J2Q parallel to its direction PJX when incident ; and, con-

versely, if any emergent ray be parallel to its corresponding

ray, it must, while within the lens, have assumed a direction

that would pass through the optical centre. This property
of the optical centre follows at once from the fact that the

tangents at the two points where refraction takes place are

parallel, and therefore the effect on this ray is the same as that

due to refraction through a plate (p. 40), i.e. that the angle of

emergence is always equal to the angle of incidence 0. Pencils

that pass either actually or virtually through the optical
centre are called centric pencils.

It is an easy matter to find the optical centre of any
lens from the expression (a), if we are given the thickness

t, (AB), and the radii of the two surfaces. It is quite
immaterial which way the light is supposed to be travelling,

whether from P to Q or from Q to P (Fig. 38). In the case

of a biconvex or a biconcave lens, the ray while within the

lens actually (not virtually) does pass through 0.

Let us consider the left surface as A, the first surface,

then if T-!
= 3, r2 = 4, and t = 2, by (a) we know that

and -
ra - 7*1

- 4 - 3 7

and we notice that is situated within the lens and nearer

the most strongly curved surface. Now, an incident ray PK'
that emerges in a parallel direction, as K"Q, will not follow

the course indicated in Fig. 38 within the lens, for it will be



84 GEOMETRICAL OPTICS

bent at the first surface, then pursue a straight course

through 0, and then be again bent on emergence in the

direction K"Q. It is, however, very convenient for purposes
of calculation to find two points, K' and K", on the axis

which will save us the trouble of calculating the angle of

obliquity of the path within the lens. This can clearly be

done by continuing the incident and emergent rays until

they intersect the axis in K' and K", or the nodal points.

This is a simple geometrical method, but it does not readily

lead to an analytical expression, and the accuracy of the

result obtained by a geometrical method depends, of course,

upon the accuracy and size of the drawing. There are, how-

ever, two analytical methods for locating the nodal points

FIG. 38.

that we shall presently give, but we shall first deal with a

case in which the nodal points coincide at the optical centre.

* Refraction of a Sphere. Coddington Lens. The sphere

may be considered as a kind of double convex lens, and

there are certain advantages attending its use, which we

shall investigate.

Note, first, that all pencils (even those that are oblique)

which traverse the centre of the sphere pass normally into

it, so that in this case all centric pencils are also axial.

It may be readily seen, from (a), p. 83, that the geo-

metrical centre of the sphere is also the optical centre of

the lens
;
so it will be convenient to find an expression for

the focal distances when considered as measured towards the

centre.
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Let (Fig. 39) denote the centre of the sphere, and let

P denote an object in front of it, Qi its image due to

refraction at the surface A, and Q the final image due to the

refraction of Qi at the second surface, B.

Let P denote PO = PA - OA = p - rlt

and q
r

QiO = QXA - OA = ^ - rb
and let Q QO = QB - OB = q

- r2.

By the formula of p. 53,

or

Dividing by p'

Now regarding Q1 as the object for refraction at the

second surface B, we note that p is to be replaced by

QiB = QiO + OB =
q' + ra, and -

by ^? in the formula
to M

P-r __!* P

So

or

or dividing by fiQ^'r^



86 GEOMETEICAL OPTICS

On subtracting (a)

J^L +J^I+l
u.g TI r

- <

112
Noting that ra = TV we see that ---- =

,
and by

r2 n r2

making P infinite we can find /"; similarly by making Q
infinite we can find/'. "We have then

i =^v.2 and i.y^.l
/ A* ra / /*'

r2

and so we may write (5) as

111 /' /"-- or = 1

This tedious work might have been avoided had we been

able to use the method of
" Cardinal Points," but it is well

to see the labour that is involved even in the simple case of

a sphere, if we are ignorant of the better method that we
shall shortly describe. It has been taken as an instance in

f f"
which our old formula 4. = 1 can be used if all the

P <1

distances involved are measured towards a certain point, in

this case the centre of the sphere. The section on Cardinal

Points will show that in any system, however complex, two

points can be found such that, if the appropriate distances

/' /"
are measured towards them, the formula + = 1 will

P 3.

hold good. In the case of a sphere these two points are

coincident.

The Coddington lens, represented in Fig. 40, is a very

convenient form of pocket magnifying glass, and has this

important advantage over an ordinary convex lens the

peripheral parts of the virtual image are as distinct as the
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central parts, provided that there is a central stop, so that

none but centric rays traverse it. Usually a deep equatorial

groove is ground in the lens, as indicated by the shaded part

in the figure. In practice it is found that the central aperture
must not be greater than a fifth of the focal length of the

lens. The defects of the lens are : (1) the image is curved

as the peripheral parts of the object are further away from

than the central parts ; (2) the working distance is very short
;

and (3) the field of view is limited
;
as only those emergent

pencils which can enter the pupil of the eye are effective ;
it

is advisable, therefore, to bring the lens as close to the eye as

possible.

The Stanhope lens is somewhat similar to the Coddington ;

it is a short glass cylinder with its ends ground convex to an

FIG. 40.

unequal degree of curvature. The object is placed on the

surface of lesser curvature, and the length of the cylinder is

such that when the more convex surface is turned towards

the eye, a distinct magnified image of the object is seen.

Nodal Points of a Thick Lens. The following method is

applicable only to lenses, and can, further, only be used

when the initial and final media are the same. Should they
be different, as in the case of the eye, it will be necessary to

use the method described later (p. 91), which is perfectly

general The only advantage of this method is its suitability

in the case of thick lenses, if we forget the formulae for

Cardinal Points.

Given the thick lens, we first find the position of by

(a), p. 83. We then find the position of the image of as

viewed from the incident surface (A), and call it K', the

first nodal point. We then find the position of the image of

when viewed from the other surface (B), and call it K",
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the second nodal point. A warning must be given when

dealing with menisci, as the point must always be con-

sidered as situated in the glass, even when it is not, as in

Fig. 37, or totally erroneous results will be obtained. Con-

sequently the method must be regarded simply as a trick or

device by which it can be mathematically proved that accu-

rate results will be obtained.

We will take the case of Fig. 38 as an example, where

n = 3, r<i
= 4, t = 2, and OA and OB we have found to be

f-
and f respectively. We are now considering the left-

hand surface to be the incident surface A, so that light is

supposed to be travelling from Q to P. The problem is the

same as that on p. 57
;
we first find the image of formed

by the surface A. As is in the glass, ju
= 1*5 and //

= 1,

so

Pfi" -f(-6) 36
\T' A /-VM ft _ -tV * __ i ^_{_ __ _ _ _r 2 - p -./"'" _| - 9

~
-69

Similarly for the surface B*

,,

/ -

and /."--
.J;

And as OB or p'

12

23

2" 92 23

The position of the nodal points is quite independent of

the direction in which the light is travelling; it is only

their names (first or second) that are changed. We have

been considering light passing from Q to P, so K' refers to

the left-hand surface. In the diagram the reverse condition

is indicated
;
the light is passing from P to Q, so that the

right-hand surface is the incident surface, and the nodal
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point corresponding to it is called K', while K" refers to the

emergent (left) surface.

The mode of using these nodal points will be illustrated

later, when we deal with the geometrical construction of the

image of a complex system.

Spherical Aberration. In Fig. 41 a beam of parallel rays

is shown that encounters a double prism ;
the more central

rays SI and ST intersect at E after traversing the prism,

FIG. 41.

FIG. 42.

while the more peripheral rays PJ and P'J' intersect at a

more distant point, L. Clearly the aberration EL might be,

obviated by bevelling the peripheral parts of the prism, so

that the incident rays at J and J' would undergo a greater
deviation. In a spherical lens (Fig. 42) this bevelling is
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carried out so that it acts like a prism, the strength of which

is continually increasing from the axis to the periphery.

Unfortunately, a spherical surface is not quite the right

shape indeed, the bevelling has been carried too far, for the

peripheral parts of an incident parallel beam intersect at a

closer point than the more central parts. The diagram
illustrates what is called spherical aberration (undercor-

rected), while Fig. 41 will indicate what is called overcor-

rection of spherical aberration.

There is one obvious way of making the focus of such a

lens more definite, i.e. by cutting off the aberrant peripheral

rays with a stop, so that the focus is only formed by the

intersection of the thin axial pencil. Another method which

has certain advantages, as has been pointed out by Lord

Eayleigh, is to block out the central rays and use only the

peripheral ones. This, however, has been rarely used in

practice.

Just as with reflection at a mirror, when an oblique or

eccentric incident pencil is considered, the refracted pencil is

astigmatic, and presents the same focal lines with the same

sphenoid shape between them. All this has been omitted in

the diagram for simplicity. The short line on the axis

between the focus of the peripheral and that of the more

central rays may be regarded as the secondary focal line,

while the intersection of the peripheral with the central rays
indicates the position of the primary focal line sagittal to

the plane of the paper.
It may reasonably be asked, Why are lenses made of this

erroneous shape? The answer is that it is impossible to

mould glass of the right shape with any approach to accu-

racy, and grinding by hand to any shape but spherical is a

most laborious and difficult undertaking.
If we confine our attention to thin oblique pencils, we

see that they may be of two kinds : (1) an oblique eccentric

pencil that is incident upon a peripheral or eccentric part of

the lens
;
and (2) an oblique centric pencil that traverses

(either actually or virtually) the optical centre of the lens,

as PQ in Fig. 38 or PQ in Fig. 37. The exact mathe-
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inatical investigation of the form of pencil after (1) oblique

eccentric refraction through a lens is most tedious and diffi-

cult, and does not lead to any simple approximate expres-
sion

; and, further, it is of little practical importance, except
to certain instrument makers, so we must refer the scientific

mathematician to more advanced treatises on this point.

(2) Oblique centric refraction will be briefly treated in the

Appendix (p. 121), as it is of considerable practical importance.
"Cardinal Points. Gauss has shown us how to extend the

f f"
use of the formulae 4- = 1, etc., not only to thick

lenses, but also to any refracting system however complex,
formed of any number of media bounded by centred spherical

surfaces. The only requisite is to find the position of two

points called the Principal Points of the system under

consideration. When the distance of the First Principal
Point H' from the object P is denoted by PH', and the

distance of the Second Principal Point H" from the object Q
TjVTTf ~F"TT"

is denoted by QH", we have ^w -f nTT ,,
= 1 universally

true, where F'H' is the distance of H' from the First Principal
Focus F', and where F"H" is the distance of H" from the

Second Principal Focus F" (Fig. 44).

Before actually dealing with the problem, we will show

exactly what it is that we want to find. Let HiA and H2B
represent the principal planes of two thin concave lenses

(Fig. 43). An incident ray parallel to the axis will, on

traversing the concave lens at HI, be refracted in the

direction F!^ as if it were proceeding from the second

focus of the first lens FI ;
on now meeting the second lens

at H2,
it will again be deviated in the direction H2R as if it

were proceeding from K We wish to find a lens which shall

have an equivalent action to these two lenses. It is clear

from the diagram that a concave lens placed in the position

KX, if its second focus be at NI, will have precisely the same
effect on the incident ray SHiK as the combination of lenses

had on SE^. The whole object of Gauss's method is to find

the position of X, i.e. the situation of the equivalent lens,
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and also its focal distance NX. In such a simple case as

this, it is an easy problem to solve by purely geometrical

means, but Gauss has shown us how to deal with any system,

however complex.

N A

FIG. 43.

The method used by Gauss is intricate and involves a

considerable knowledge of mathematics, but as we know the

result of his calculations, we shall be able to find the positions

of H' and H" by easy algebra if we treat the question in the

right way. In any algebraic problem it is necessary to pay
the utmost attention to the algebraic statement of the problem,

but after it is once correctly stated, think no more about

the meaning of the future operations until you get your result.

" Put it into the algebraic mill and turn the handle." The

chief difficulty of all beginners in mathematics is that they

try and think what each algebraic step means. This is quite

unnecessary; thought is only required when stating the

problem.
We will take as an example the thick lens in Fig. 44,

and use the following symbols to denote the various distances.

The thickness of the lens AB =
t, the distances of A

from the first (fi') and second (fi") foci, due to the first

refraction at A are fx'A, =/i' and f/'A =/i", and similarly

when f2
'

and fa
"
denote the first and the second foci due to

the second refraction at B, fa'B =/2',
and f2"B =/ 2". The

values of these symbols can be determined in any given case
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by the well-known formulae of p. 55 ; they are indicated in

the special case illustrated in the diagram by the letters

below the line, whereas H' and H" that we have to find are

shown above the line. We shall also use the symbols ti and

h" to denote the distances H'A and H"B respectively.

Now, if P denote any object (not illustrated in the

diagram), PA or p will denote the distance of the surface A

Stff

from it, and we can easily find the position of the image Qi,

due to the first refraction, for if q\ denote the distance QiA,

g/i
'

P -
/i

Kegarding now Q! as the object that forms the final image

Q by refraction at the second surface B, we can as easily

express QiB in terms of QB or q. For

QlB = ^7?
But QiB = QiA -f AB =

qi 4- t, so we can eliminate qi by

substituting for it our previous expression. We have then

We have to find the positions of H' and H" so that the

formula

FH' F'H"

shall give~a result that is identical with that given by (a).

Now,
'

PH' = PA -f- AH', or PA - H'A, i.e. p - ti
;

similarly, QH" = QB - H"B = q
-

&", and if we denote
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FH' by F' and F"H" by F", this last formula can be

written

All, then, that we have to do is to make these two formulae

(a) and (b) identical with each other. For (a) we shall

write

or

pq(t+/r -/a') -yf/i'/t"+ ft")+ gffi'ft
-
ft

1

)+*fW= o (O

And for (b) we shall write

F'q
- F'b" -f F"p - F"h' = pq- ph" - qh' + k'h"

or

^ + ^') + ^'^" 4.w 4. jr%' = . (V)

On comparing the coefficients of (a
1

) and (5') we see that

the two expressions will be identical if

/ 4_ / " _ / ' fi'f*" + (/a" __ ^/i' fif* ___(/i/a"_72 A" + ^"' 1^4-^' ~h'h" + F'h" + F"ti

or calling this expression K,

,A

and if ^'A" + F'h" + F"h' =

// /* / -f ' ' -f "-f '

.... AA ,. - -, if V $, if ^ =
,
and if F" = fl -

these values are clearly consistent, and they are therefore

the solutions required.

In the case illustrated in the diagram (Fig. 44), the

radius of the first surface, TI = 4, that of the second sur-

face r2 = 2, fjiQ
= 1, u = 1/5, and t = 3.
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/'or
~

./i or
,

JJL fiQ 5

and K = t +ff -ft = 3 + 12 - 6 = 9

fit -8x3
^ = K= 9~

:

j\, 7

ft -4x3

, fi't -8x3 M .

.A=y 9
= -2|,

If in this case we were to use the formula on p. 70,

which neglects the thickness of the lens, we should have

8

or /" = -
8, and /' or -/" = 8, a result that is quite

erroneous. However, on adding the correcting term

- -
,
or on using the form

-

-

r = r2
"

ri
"
p) we getr

=
i 3

.'./" or /' = 5j, which is correct.

When two compound systems, A and B, are combined,

A being the first system traversed by the incident

light, t = Ha'H/, i.e. the distance of the first principal

point of the second system (B) from the second principal

point of the first system (A) ;
whereas ti = H'Ha', or the
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distance of the first principal point of the complete system
measured towards the first principal point of A. Simi-

larly A" = Ha"H6

"
and K= Ha"H6

'

+/"-/*', the sub-

scripts a and b denoting the systems to which the letters

refer.

These formulae are a little difficult to remember, but

when reference can be made to them they are easy to

employ, and they are of universal application. We shall

give three examples of their use, to illustrate their simplicity

and value.

Ex. (1). The ordinary form of eyepiece for a microscope

(Huygenian) consists of two convex lenses, the distal one

being called the field-glass, and the proximal one, to which

the eye is applied, the eyeglass. It is found that a No. III.

eyepiece, with an alleged magnification of eight diameters,

cannot be used as a magnifying glass when held in the

normal position before a microscope slide. Explain this, and

show how it can be used as a magnifying glass.

In all Huygenian eyepieces the field-glass (A) has a focal

length three times that of the eyeglass (B), and the distance

between them is one-half of the sum of the focal distances.

The advantages obtained by this construction cannot be

explained in this place, but it may be stated that the

spherical aberration of the system is less when each lens has

its second focus at the same point, and that the size (though
not the position) of the image is achromatized when
t = K/.' +/,')

With a No. III. eyepiece fa
' = f ins., and // = f in.

As we may regard the lenses of negligible thickness, we
have t = | ins.,

and *<**+/."-/' = 4-4-4 = -f

ET I Jajb= i^r- == ~
xs

^=-*fj "* and ^"= -5
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The position of the cardinal points of this Huygenian

eyepiece is illustrated in Fig. 45, and it will be seen that the

first principal focus (F') is

within the eyepiece; and

we know from p. 78 that

the object must be placed
not further off than F, so

clearly the eyepiece will

not act as a magnifying

glass when used in this
FIQ

way. However, F" is situ-

ated outside the lens, beyond B, so that if we reverse the

eyepiece, using A as the eyeglass and putting the microscope
slide in the position of F", it will form a very efficient mag-

nifying glass. In such a position, when the eyepiece is

reversed, F" and F' are simply interchanged. We have

shown that the magnifying power of a lens is measured by

^.
In this case 4=10 ^--^ = 8.

When a Huygenian eyepiece is used in a microscope, the

image formed by the objective of the instrument is formed

within the eyepiece at F', so that magnification results

normally.
If the two lenses of the eyepiece were placed in contact,

the power of the combination would be

r+p-f+f-lJa Jb

or the combination would then be equivalent to a lens of | in.

focal length, while its magnifying power would be doubled,

being 16
;

it would, however, manifest all the chromatic and

aberrational errors thattheHuygenian eyepiece in partcorrects.

Ex. (2). Suppose that the eyeglass in a No. III. Huy-
genian eyepiece were replaced by a concave lens of equal

strength : what would be the power of the combination, and

what use could be made of the instrument ?

Here/,' = - and K 01 t +/."-/.'- J_f + | =

-
00

and as F' = -*& = m
, the power = -

A Jf
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The power of the combination is therefore 0, i.e. all inci-

dent parallel light emerges parallel, and it might be thought
to be useless as an instrument; but a little consideration

will show that it will act as a very efficient telescope

indeed, this is the form of the Galilean telescope or opera

glass.

A very distant object, subtending a visual angle 9, will

also make the angle fa"AD at the field-glass (Fig. 46) equal

FIG. 46.

to 8, and an image of the object would be formed in the

second focal plane at f "D. But fa"D is also the situation of

the first focal plane of B, consequently the incident parallel

light which is converging towards D will, owing to the inter-

position of the concave lens at B, proceed as a beam of

parallel rays in the direction BD (the spaced and dotted

lines). Similarly, the axial incident rays which, after

traversing A, tend to converge towards fa
"
will, owing to the

action of B, proceed as a parallel beam in the direction of the

axis. Note, however, that the direction of the oblique pencil
has been changed, as it now makes an angle 0' with the axis

instead of 0. An eye, therefore, if adjusted for parallel rays,

placed close to B will see an erect virtual image subtending
the angle 0', and the magnification of the instrument will

be

tanj?' _fa"A_ -5
. -5

tan 6
~

'B
=

"2
*

6
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Ex. (3). We will now find the cardinal points of the

human eye. According to Tscherning's most recent investi-

gations, the lens of the eye has a focal length (0) of 51/34

mm., and its principal points, indicated as H! and Ha in

Fig. 47, are so situated that HiAi = 2-308 mm., and HaA2

= 1*385 mm. The thickness of the lens is 3*9 mm., and it

is placed 3*6 mm. behind the cornea (Ao). We shall con-

sider the media to be of the same refractive index 1*3375,
bounded by the cornea of radius - 7'8 mm. In the diagram

FIG. 47.

the incident light is presumed to be travelling from right to

left, so we will regard this as the positive direction.

Taking first the corneal refraction, we find

and /"= -fif'= -30-91 mm.

The distance t or

AoHi = AoAi + A^ = 3-6 + 2-308 = 5*908 mm.
and j^or t +/" - f = 5-908 - 30-91 - 51*34 = -76'342

IT' A -
T.' /'< 23>11 * 5-908

1 7QQ
.-. H Ao, ^.e. h or - =-.- = - 1'789 mm.
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- -23-11x51-34
1 OT F = -4 = ---- _ -- =15-64 mm.

F'H" or J" - = ---- = - 20-79 nan.

The distance of the second principal point from the cornea

can be easily obtained, for

H"A = H"H2 + H2A2 + A^ + A^o,
or H"Ao = 3-973 + 1'385 - 3-9 - 3'6 = - 2-142 mm.

The point H" is therefore only 0'353 mm. from H'. We
shall not, then, introduce any appreciable error in consider-

ing that they coincide in one point H, towards which both

the focal distances are measured.

Nodal Points of a Complex System. When we have found

the cardinal points by the above method, it is a simple
matter to find the nodal points. Take any point S in the

first focal plane (Fig. 48), and through it draw SJiJ2 parallel

to the axis; join J2F". All light proceeding from S will

emerge from the system in a direction parallel to J2F", e.g.

SIiI2K. From S draw the ray SDiK' parallel to J2F", repre-

senting such a ray, and from D2 the point on the second

principal plane corresponding to Db draw D2K"E parallel

to J2F", cutting the axis in K". Then K' and K" are the

first and second nodal points of the system. We shall see

the use of them in the next section. Meanwhile we will

devote a little attention to the diagram. We notice first that

every ray incident on the first principal plane travels parallel

to the axis until it meets the second principal plane ;
this is

a characteristic property of these planes, and as any object

in one plane, when viewed from the other side, will be seen

without any alteration in size, they are often called planes of

unit magnification, or the Unit Planes.

As the sides of the A F'SK' are parallel to the sides of

the AH"J2F", and as F'S = H"J2 ,

K'F = F"H"or I?".

Also the A EF"K" = ADiJiS, as the sides are parallel, and

as EF" = D2J2 = D^!,

/. K"F" = SJX
= F'H' or F'



NODAL POINTS 101

It is also clear that K'K" = DiD2
= H'H",

and that K"H" = K'H' = F'H" + F'H' = F" + F.

FIG. 48.

We have found then all the cardinal points of the standard

emmetropic eye which are given in the subjoined table.

CARDINAL POINTS OP THE EMMETROPIC EYE.

H'A . .

H"A . .
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principal point, or KH, = F"H" + F'H' = - 20-79 + 15'54

= 5 '25 mm.
Geometrical Construction of the Image. To find the image

of AB (Fig. 49), we first mark the position of the cardinal

points on the axis. We then join AK', and draw K"# parallel

to it. Then we can either draw AJ" parallel to the axis and

J"F"a through F", or we can draw AFT through F', and IT'a

parallel to the axis. In either case, a is the point of inter-

section of the line with that drawn through the nodal point.

.
i

.
HT _ F^H' _ F'H' F'~
BA

~
F'B

~
F'H'-BH'

" Tr^
1 la F"6 _ F'H" - 6H" _ F" -

g
o
m
H"J"

~
F"H"

~
F"H" F "

On p. 75 it was shown that when thin lenses are con-

sidered - = -, and we see from Fig. 49 that - = ^^-, soop o .bJi.

that the nodal points of a complex system play the part of

the optical centre (0) in a thin lens. The distances &K" and

BK' are usually denoted by g" and g' in the books.

In the simplified schematic eye described above, the nodal

point K acts as if it were the centre of a convex spherical

surface of radius 5*25 mm. that forms the boundary of a

medium of refractive index

F" 20-79~
F'

r
iF54~

1338

The tangent of the visual angle subtended at the nodal

point of the eye (p. 77) by an object is the same as the

tangent of the angle subtended by the retinal image at K.

If this retinal image be i mm. in height,

tan =

It is often simpler, when the object is very distant, to con-

sider an optical instrument and the eye as forming one

complex system, as in that case tan is practically constant,

and if K" denote the second Nodal Point of the system and

K that of the unaided eye, it is clear that the magnification
of the system is as 6K" : &K
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As an example, we may explain the action of a Baden

Powell lens, which is used as a handy pocket opera glass.

It is simply a convex lens of weak power which is held at

arm's length, and distant objects are viewed through it;

these then appear larger to the eye, or, when less correctly

expressed, they are said to seem nearer.

We will suppose that the glass is + 0*5D where /'
= 2000 mm., and that it is held at a distance of 500 mm.,
or about 20 inches, from the eye.

On considering the lens and the eye as one complex

system, and finding the cardinal points, we get the following
values :

K= t +f _ F' = 500 - 2000 - 15-54 = -1515-54

,, ft 2000 x 500
" * r K =

-1515-54-
= ~

, F"t -20-79 x 500 = 6-859 mm.
h Or

^r
=

-1515-54

, _ -/'J __ -2000x15-54
K -1515-54

~ *

p,,^f"F" -2000(-20-79)^
~K~ -1515-54

It is clear, then, that the first principal point and the

first focus are both more than 100 mm. behind the eye.

This is of no importance in the problem now before us
;
but

the second principal focus must be situated on the retina if

the object is to be seen distinctly, so we must find whether

this is so.

F" is situated 27'436 mm. behind H", which is 6*859 mm.
in front of the eye, consequently F" is 20*577 mm. behind

the principal plane of the eye. As in the standard eye F" is

20*79 mm. behind its principal plane, we see that, unless the

eye be 0*213 mm. too short, a sharp image will not be formed

on the retina.

Now, few eyes are of exactly the standard length, and

we will suppose that the eye considered is too short by
at least this small amount (less than 0-75D of hyperme-

tropia), so that 6K" = F"K" = -F'.
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The magnification (M) will be as F"K" : F"K
F"K" -F' 20-51

=

F'K
=
^F'

=
T5^54~

13

Consequently, the distant object will appear larger by

nearly a third. If the eye be myopic or too long, the Baden

Powell lens is useless without some contrivance to make the

image definite. The simplest effective contrivance is a card

with a pinhole in it held close to the eye. In this way the

circles of confusion on the retina are made much smaller, so

that the image .may be regarded as sharply defined.

Graphic Method for Cardinal Points. Professor Sampson
has devised a most ingenious method of finding the cardinal

points of a thick lens by a graphic method. It is an exten-

sion of the graphic methods which we have frequently illus-

trated in the preceding sections.

The diagram (Fig. 50) shows this method applied to the

case of the meniscus we discussed on p. 95. The thickness

of the lens AB is 3, so we measure AB in the positive direc-

tion (upwards) 3 units. As A indicates the first surface, we
mark off fi'A in the negative direction to represent

- 8 units,

and fi"A in the positive direction to represent 12 units.

Similarly, dealing with the second surface B, we make f2'B

equal to +6 units, and f2"B equal to -4 units. The paral-

lelogram referring to the first surface (A) is completed at KI,

and that referring to B is completed at K2.

Join KxK2,
and produce to meet the horizontal line

through B at H", cutting the horizontal line through A at H'.

Then H'A is ti, the distance of the first surface from H',

and H"B is /*/', the distance of the second surface from H". In

this case they are both measured from right to left, so they
are both negative : H'A = -

2f,
and H"B = - 1.

Join KI and f2',
and produce to meet the horizontal line

through A in F'; and join K2fi", and produce to meet the

horizontal line through B in F".

Then F'H' is positive and is found to measure 5J units,

while F"H" is found to measure - 5J units. It will be found

that F'H' and F"H" correctly indicate the two principal
focal distances of the thick lens illustrated in Fig. 44.
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The method is of delightful simplicity and presents no

difficulty whatever, if due attention be paid to the directions

of the positive and negative measurements, and if it be noted

that the points fi" and f2
' must be in the same straight line

f A



, .. . F'B fj"B
Similarly, ~ fl

= T^nr,K2 i2 ii i2
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F'H" + H"B ri"A + AB
or

or - (Cf.p.94)
/2

(The above is not given as a proof of the construction, for

clearlyFA = FTK' + K'A, and F'B = F'K" + K"B, or indeed

the sum of any other lines with the same end points. It

will be found that if the final medium has a different re-

fractive index from that of the initial medium, the points
marked H' and H" really denote the two nodal points K'

and K" of the system. As from p. 101 we know that when
F" = F', the nodal points coincide with the principal

points, we may regard the points H' and H" determined by
this construction as always denoting the nodal points.)

QUESTIONS.

(1) The focal length of a convex lens is 6 ins. ; an object is placed

36 ins. from it. What is the relative size of the image, and where is

it formed ?

(2) Show that/'/" =(/' - p)(f" -q) in all cases.

(3) The radius of curvature of the first surface of a thin converging
lens is 6 ins. If its focal length be 10 ins., and if the index of refrac-

tion be 1-52, what is the radius of curvature of the other surface ?

What would its focal length be when placed in a tank of water 0* = ) ?

(4) A convex lens of focal length i in. is used as a magnifying

glass. The nearest point of distinct vision is 10 ins. from the nodal

point of the eye. Find the magnifying power (i.) when the lens is in.

from the nodal point, (ii.) when it is 1^ in. from the nodal point ; and

(iii.) when the object is i in. from the lens, and the eye is adapted for

distance.

(5) The cardinal points of the following thick biconvex lens are

required where r
r
= 4, r2 = 2, t 3, and /x

= T5. Use the graphic

method, and test your results by the algebraic formulae for the position

of the cardinal points.
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THE following notes are intended for those who require some

further knowledge of the subject which the previous elementary
treatment rendered impossible. At the same tune care has been

taken to include nothing which has no practical application ;

academic points of merely mathematical interest have been rigidly

excluded.

Oblique Reflection. Distances of the Focal Lines. We will

now give the proof of the formula quoted on p. 33, denoting

FIG. 51.

SP by u and F
X
P and F2P by vl and v2 ,

the distances of the focal

lines due to the thin incident pencil PSQ (Fig. 51).

PCQ = OCQ - OOP = CSQ + SQC - (CSP + SPG)
= CSQ - CSP + JSQF, - JSPF,

2PCQ = 2PSQ + SQFi - SP^ / (a)



110 APPENDIX

But owing to the equality of the angles formed by the intersect-

ing lines SP and FXQ, PSQ + SQF, = PFiQ + SPFW and on

substituting this expression in (a) we get

2PCQ = PSQ + PF,Q ..... (J)

Now, as the formula that we wish to find is only true for thin

pencils PSQ and PFXQ, we may substitute the chord PQ for the

arc PQ, and regard PSQ and PF
XQ as triangles; moreover,

CQS or FjQC = <.

* r>Qn
Sn sn

Then m A PSQ, gp
-
ETQS

"
E{90

3
+"CQS)

PQ = sin PSQ
'* SP

~ :

cos <

andinAPFO PQ _ sin PF,Q _ sin PF,Qm&Wf* FXP
~

sin PQF,
~

sin (

PQ sin PF tQ
'''Ff~~ cos<j>

therefore in the limit when PSQ and PFXQ are very small

= . (c)

Note that as PQ is measured from below upwards, but SP
from right to left, the angles PSQ and PQS are measured in

reverse directions
;
a similar precaution must be exercised in

dealing with the angles PFjQ and PQFj.
On substituting the expressions in (c) for those in (b), we can

write

PQ
COS<

, po - ^

.

u v- r cos

Again, since A F2PC + A GPS =
sin

<j> -f- ru sin
<^>
= V#JL sin

or, on dividing throughout by \v#u sin ^>,

1 1
__

sin 2<
__

2 sin < cos
rf> __

2 cos <

u v2

~~
r sin

<^>

"~
r sin < r

The reader may be inclined to think that the consideration

of such very thin pencils is of little practical use, but it must be
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remembered that only very thin pencils can enter the pupil of

the eye, so that only thin pencils need be considered, if the

image formed by the mirror is viewed directly by the eye.

Camera Lucida. The Wollaston prism shown in Fig. 52 is

the usual form of camera lucida that is used in sketching objects

from nature. It is a glass

prism that presents four

angles, one of which is 90,
the opposite angle 135, and

the remaining two angles are

each 67J. Light from the

object enters one of the faces

normally, and is transmitted

without deviation to the

second face as SI; at I,

however, its angle of inci-

dence is 67^, much greater

than the critical angle for

glass, so that it is totally

reflected at I as IR ; again
at R it undergoes total reflec-

tion; and finally it emerges Q

normally to the upper sur- FlQ 52>

face towards the eye at E.

The eye will therefore see a virtual image of the object pro-

jected downwards in the direction EQ. In practice the eye
is placed over the edge near T, so that one half of the

pupil receives the light from the prism, while the other half is

viewing the sketching-block and pencil placed below in the

neighbourhood of Q. It is most important that the image of

the object should be accurately projected on to the plane of the

sketching-block, so the upper border at T is ground concave so

that it will have the effect of a 4D lens. In this way the

image is projected about 10 ins. from the prism, which will be

a convenient distance for the sketch to be made. The image
seen is erect, as there are two reflections ; had there been only
one reflection the image would have been upside down.

Oblique Refraction at Plane Surface. Focal Lines. We
will now consider the refraction of a thin oblique pencil at a

plane surface. If POQ (Fig. 53) be an incident oblique pencil
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originating from the source in a rare medium and refracted at

PQ in the direction RB', the primary and secondary (virtual)

focal lines will be formed at Fx
and F2 . As the pencil considered

is very thin, we may substitute the angles POQ and PF
XQ for

sin POQ and sin PI^Q, and we may disregard the difference

between the angles AOP and AOQ and consider that they are

FIG. 53.

each of them equal to
<f>, and similarly we may consider F2 as a

point, and consider that AF2P = AF2Q = <'.

If we denote OP by u, Ff by vlt and F2P by v& we have

in A POQ,

and in

PQ __
sin POQ __

sin POQ
OP

"~
sin PQO

""
coTAOQ

PQ

so

sn

POQ = ^ cos $ and PF
XQ =^ cos

Now, sn sn

cos

cos
<f>

(a)

and we wish to find from Fig. 53 an expression for -,, or the

,. ... -

limiting value of
A

,
i.e.

POQ
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When, therefore, POQ and PF
tQ become infinitesimal,

PQ
d<f>

u vl cos <
p.' cos <-

,AX
(A)

AP AP
And since sin < = and sm 9

/ sin
<j> _ F2P

r
sln~'

-
OP

(B)

The refracted pencil will be astigmatic, and a sphenoid will

be formed between the secondary and primary focal lines (F2 and

Fj) exactly like that described on p. 65, when oblique refraction

at a concave surface was considered from a source of light whose

distance u was less than
/u, (FjP). A blurred image of the

point will be formed at the position of the "circle of least

confusion
" between F2 and F

l (as represented by D in Fig. 56,

where, however, F,>P is greater than FjP).

Oblique Refraction through a Plate. Let t denote the thick-

ness of the plate, and let I denote the length of the path NM of

the thin pencil through the plate in Fig. 19. For the first

refraction we have v-u . ^ and v2 = ~u by (A) and (B).
^o cosj <

[j,

For the second refraction at M the angle of incidence is <', and

that of emergence is <, while the relative index is
, , so that on

replacing u by i;, + I or vz + I in the respective equations, and

making the other appropriate substitutions, we get

. (A')

..... (B')

The distance between the two foci, F2
- V, or^l 1 -

fj. \ COS <p
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may be taken as a measure of the indistinctness of the image.
However oblique the pencil the distance separating the two foci

cannot exceed ~, I ;
for direct pencils of course < = 0, and the

two foci are coincident at one and the same point distant u + tl

from the distal surface of the plate. If preferred we may sub-

stitute t sec <' for I, but the form given above is easier to

remember.

When a small object S is seen obliquely through a glass plate

(Fig. 54) the following points may be observed :

(1) The image S' is

blurred, as it is represented

by the" circle of least con-

fusion" between the two

focal lines.

(2) The upward dis-

placement is greater than

when the object is viewed

normally, for in that case,

as we found on p. 40, the

upward displacement is

^
t, or one-third the thickness of the glass plate.

(3) There is in addition a lateral displacement.

Refraction at Spherical Surface. Focal Lines. The length

of Vi is determined in this way (Fig. 55). When the pencil is

thin, CPO or CQO may be represented by <, and CPF
2
or CQF

sn s sn
a A _

sin (W^OQC) cos CQO

Similarly, in A F
aPQ,

PQ _ sin PFjQ _ sin PF
XQ _ sin

FjP
~~

sin PQF, sin (90
- F

aQC) cos CQF2

Therefore in the limit when POQ and PFjQ are very small,

PQ
C

, PFlQ =PQ' and POQ = *
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Now, /AQ sin
<f>
=

p.'
sin <j>,

115

cos

cos

As we wish to find from the figure an expression for --, ,
or

the limiting value of -T~?>J we must no longer disregard the differ-

ence between CQO and CPO and that between

Since the angles at the intersection L are equal,

i
and CPF,.

or

or

FIG. 55.

POL + LPO = LCQ + CQL
POQ + <

And similarly, since the angles at K are equal,

PFjK + KPFj = KCQ + CQK
4-

. A<A _"

or in the limit

But

- PCQ
S <> 1

s $ _ 1\

v f)
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fl'
COS

2
<'

fl'
COS

<f> _ COS
2

<f>
COS

r

\- cos <f>
)V

sn < cos <' cos
<j>

sin <'

r sin <'

_ SinQ- <#>')
OI -

.
-r

t

~
> I .tV J

/*, w r sin <

Again, since

ACPO = ACPF2 + AF2PO
Jrw sin < = Jr^ sin

</>' + Jv2w sin
(<#> <')

or on dividing throughout by fyruvz sin
<^>'

sin < 1^1 sin > <'
' ~

sin
<f>

V2

~
u r sin

These formulae (A) and (B) are only true for extremely thin

pencils, but it is only such that can enter the pupil of the eye, so

that they are applicable in all the optical questions relating to

oblique vision in the human eye. They will also be used in the

next section when we deal with thin oblique centric pencils

traversing a lens.

It is evident from formula (A) and (B) that

--
( 1
- sin A')

- 1 - rin'* = JL _ 1

MtV

or !_
Ho Vl U

fi' . V2 sin2-
(v.

-
Vl)

= ^
When

yu,
has the value 1, this expression takes the form

sn

and we see that when ^2 and ^x carry the same sign, i.e. when
the two focal lines are on the same side of the refracting surface,

^! as w=
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On considering the caustic curve formed by a wide divergent

pencil issuing from a point source, it is clear that the cusp of the

caustic points away from the spherical surface when vz> vlt but

that it points towards the surface when v2< Vj. No caustic is

formed when v2 = V1 ; this can only occur when < = 0, or when

u =
fj.vl ; the refracting surface must then be concave, for if

< = 0, u = rt
and if u = pv^ as v must be positive, it must be

greater or less than u, according as
/u,

is less or greater than 1.

Circle of Least Confusion. It has been shown that if the

surface be not aplanatic for the source, whenever the incident

pencil is oblique the refracted or reflected pencil is astigmatic,

crossing itself in two focal lines and tracing out a sphenoid sur-

face between them. It is required to find the position and size

of the smallest cross-section of this sphenoid surface represented

by DK in Fig. 56, which is practically a repetition of Fig. 15.

The surface (ab) at P is that part of the mirror or lens which

gives rise to the astigmatic pencil that has its focal lines at ^
and F2 . For geometrical convenience squares have been described

on the radius (k) of the circle of least confusion, and on the

radius R of the effective aperture of the receiving instrument.

Now, DP (or x) and k, i.e. the distance and side of the small

square at D, can be easily expressed in terms of a and b. Note

that when comparing the vertical sides of the rectangles at P and

D, while a is measured upwards k is measured downwards, so

that they carry opposite signs.

a=~k or ~F '''^
= X

~1T ' ' (V)

F2P_F2D . v*_vz -x
~b"~^k~ ' 0~ k (2)

On eliminating k from (!') and (2') we obtain

x vl -.Vz x
a = -

which, on dividing by x, reduces to
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In practice, however, we have more often to consider the

cases in which a real image is formed at the back of an eye or at

the back of a photographic camera. It is, therefore, much more

convenient to express the distance (x) and the radius (k) of the

circle of least confusion in terms of the distance (s) of the

receiving instrument and the radius (R) of the stop used with it.

Let H' represent the first principal plane of the receiving
instrument (distant H'P or s), which only allows a pencil of

radius R to be transmitted through it ;
if the receiving instru-

ment be an eye, R represents the radius of an equivalent pupil

placed in the first principal plane of the eye.

By similar triangles we have

FT!! FT!) DF, . #1 s x v\ /, \
or

R -k k R k

F2H F2D v2
- s #2 - x

and ~BT ~T ' ' ~IT T
i\ -f #2 2s v2

R(v
}

2
- v^

or k = V^-r . . (a)
- -

Again, from (1) and (2) we also see that

k _ x vl __ v2 x

R~~ Vi s
~"

#2 s

or x(vz
-

s)
-

vj)* 4- ^s = vvvz v<,s x(vv
-

s)
.-. X(V-L + vz 2s) = 2viV^ s(vi -f v2)

2^-sfa + t,)

Vi 4- ^2 2s

These two equations () and (b), determining the radius and
the distance of the circle of least confusion of an oblique pencil,
are always true whether reflection or refraction are considered.

If the receiving instrument be an eye, and the lens at P be a

spectacle glass worn in its appropriate place (the first focal plane
of the eye), a simple expression can be obtained for the radius r

of the retinal confusion circle formed by the retinal image of this

confusion circle at D.

For
r F>~
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But as the lens is placed in the first focal plane, PH' = F',

so 8 = -jT, and F' -p = PH' - DH' = PD = -x;

sR(vz
-

flQ_ == ~~ -
s(v! 4-

Least Circle of Aberration. These formulas are of no use

when we are considering the spherical aberration of a lens

used with full aperture, as in Fig. 42. Let y (Fig. 57) denote

R

FIG. 57.

the semi-aperture of a convex lens the focus of which is at F", and

let BTL denote an extreme ray ;
it is clear that if a screen were

placed at F", there would be a bright point at F" which would be

surrounded by a halo of light extending to L and L'. The Jine

F"L is called the Lateral Aberration (I) of the extreme ray RTL,
while F"T or a is called the Longitudinal Aberration of RTL
which cuts the axis at an angle H"TR or

\jr.

Clearly a = F'H" - TH" = f
" - y cot ^,

and I = a tan
\j/.

The point E represents the position of the first focal line (/j),

and the point T that of the second focal line (/2) of the extreme

ray RTL, and the curve EF"E' represents the Caustic Curve

formed by the lens when its effective aperture is R'R. It is

obvious that the light is concentrated over the smallest area at D,
which marks the site of the Least Circle of Aberration, its

radius DK or k is determined by the point where the extreme

ray RTL cuts the caustic E'F". It is usually stated that

F"D = a and that k = l
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This is only a very rough approximation, as the position of D
can only be determined by tracing the caustic,

1 which may be of

almost any shape, some being long and narrow, while others are

short and stumpy, so that no general expression can be given for

the position of D. If in any case the position of D is given, of

course Tc = TD tan
\j/.

Thin Lens. Thin Oblique Centric Pencils. It has been

already demonstrated that all oblique pencils which traverse the

optical centre of a lens emerge at an angle equal to that of

incidence
(<j>)

at the first surface, and that the angle of incidence

at the second surface is equal to the angle of refraction (<') at

the first surface. This fact is universally true, however different

the radii of curvatures of the respective surface may be.

Fig. 58 gives in a simple diagrammatic way the results of the

refraction of a thin oblique pencil PO that traverses the centre

O of a thin concave lens represented by the plane HO.

FIG. 58.

By the method of p. 116 we find the positions of pl and p.Z)

the primary and secondary focal lines due to refraction at the

first surface. Then, regarding p l
as the virtual object for the

second surface, we find g1 as the final primary focal line due to

this oblique centric refraction through the lens, and similarly

q represents the final secondary focal line.

1 A paper of mine in the Proceedings of the Optical Convention, 1912,
describes a method of tracing Caustic Curves.

I 2
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Hence, if r^ and r2 represent the radii of the first and second

surfaces respectively, and if PO = U, pf> = vlt andp2O = #2,
we

have for the first refraction

p! cos2 $ _ cos2
<ft __// 1

__
sin

(< <') .

^U "~
A 2>2 U "

T sin <>'

For the second refraction <' is the angle of incidence, < is

that of refraction, and ? is the relative index, so if qf> = V^,

and q2O = Vjj, we have

x cos2 < cos sin
' - <>

Vi jw 2 vz r.2 sn </>

cos2 1 - sin <> ~
sn

On adding (a) we obtain

1 1 sin -
o,cos

This formula is, of course, only true for thin centric pencils ;
it

is of no use when the whole aperture of a lens is employed to

form an image, but only when a diaphragm with a small central

perforation is used with the lens. It is, therefore, applicable to

the case of a camera lens when a small "
stop

"
is used to make

the image more sharp, but perhaps the most important professional

use of it is in the case of spectacles. The pupil of the eye then

limits the width of the effective pencil, and when the visual lines

traverse the centre of the spectacles an application of the formula

gives rigidly accurate results. If the wearer gazes through
eccentric portions of his glasses, the results are only approximately

true, as then an investigation into the problem of oblique
eccentric refraction would become necessary. However, for all

practical purposes the simple formula we have obtained will

suffice.

Short-sighted persons are often seen wearing their pince-nez
tilted on their nose, and they declare that they see better with

them in this position than when they are placed vertically. It

will always be found in such cases that the myope is astigmatic,

and that his pince-nez do not correct his astigmatism. He is, in
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fact, making use of this property of tilted lenses to obtain an

astigmatic pencil which shall correct his error. I personally very

frequently order tilted spectacles to poor patients to whom the

expense of correct sphero-cylindrical lenses is prohibitive. Tilted

lenses are of use when the power of the spherical part of the

lens is high, and when only a weak cylindrical effect is required
in vertical meridian, i.e. when the plane axis of the cylinder is

horizontal ; they have this incidental advantage, that they are

lighter to wear.

We will take an example to illustrate this application of the

formula, as it will show the most convenient way in which such

questions may be treated.

Ex. A patient wears his distance pince-nez ( 10D) tilted

30 from the vertical plane. Calculate the effect of this dis-

placement.
As the object is presumed to be at a great distance, the

terms involving
-

vanish, and remembering that

when distances are measured in centimetres, we may write the

equation (A) as

D sin <-<*>'
cos2 -

.
--

I sin

where D stands for 10 dioptres, Dl
for the dioptric power of

the glass in the vertical meridian, and D2 the dioptric power of

the glass in the horizontal meridian.

When < = 30 and /A
= 1'5, D2 is found to be very nearly

10-95 dioptres. Consequently,

that is, the 10D glass with this tilt will act as if a cylindrical

glass of power 3*65D, with the plane axis of^the cylinder hori-

zontal, had been added to a spherical lens of 10-95D. If we
denote the cylindrical glass by Dc we may find its power more

shortly thus

:.-D, = K- 10-95) =5-3-65D.
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Decentration of Lenses. It is sometimes said that the

refracting power of a lens is measured by the deviation that it

induces on a ray of incident light. On referring to Fig. 59 this

FIG. 59.

statement is seen to be untrue, or at any rate inadequate. The

First Focus of the convex lens is indicated by F', and the ray
F'H on emerging from the lens pursues the direction HS

; its

direction therefore undergoes a deviation F'HS' or HF'O, and it

is clear that the deviation HF'O depends upon the height of OH,
i.e. it depends upon which incident ray we choose to consider. It

will be noticed that the angle HF'O is negative, being measured
TTO /

in the clockwise direction, so tan HF'O = WQ or
ji
where HO is

denoted by /. The lens, considered only with reference to the

ray F'H has the same effect on it as a prism with its edge

upwards ; indeed, a lens may be regarded as a prism the strength

of which is continually increasing as one passes from its

centre O.

Now, if an eye were at S, it would see the image of an object

at F7

displaced to a great distance in the direction of S'. The

lens would be said to be " decentred " HO millimetres downwards

(with respect to the eye). If the lower part of the lens were cut

away it would be called a Prismosphere, as it would act precisely

like a spherical lens which had been bisected equatorially with a

prism inserted between the two halves. Recently a great deal of

attention has been directed to the properties and applications of

decentred lenses or prismospheres, so that it may not be out

of place to give the very simple formula which connects the

decentration I of a lens with the deviation it induces.

Prism Dioptres, Centrads. The Prism Dioptre is a unit

proposed by Prentice, and is that angle whose tangent is 0*01 and

is symbolized by delta (A). Consequently, with a -f 1D lens of



PRISM DIOPTRES 125

which /' = 1 m. or 100 cm., when OH (Fig. 57) is 1 cm. a

deviation of lA is produced, for

In the prescription of spectacles the decentration, HO or I, is

always measured in millimetres, so that we have the simple

formula N =
-TQ

A, where N denotes the number of prism

dioptres.

In order to obtain all the information possible from this

formula we must make some special convention about signs. A
prism, for instance, with its edge towards the right before the

right eye would cause divergence of the eyes, but if so set before

the left eye, it would cause convergence of the eyes. If, however,

we agree to call prisms with their edges upwards or outwards

(from the nose of the patient) negative, we shall get consistent

results. Further, if we regard decentration downwards and

inwards as also negative, the above simple formula will give us

full and complete information about the prismatic equivalent of

all decentred lenses. This convention about signs is a little

difficult to remember ; the memoria technica that I use is

Ztecentratiow, down and in, negative; Prisms opposite. For

instance, what effect will a 5D lens have if decentred 4 mm.

upwards ? This means what effect will a spectacle lens have if

its optical centre is displaced 4 mm. above the pupil of the eye ?

Here I = +4, it is positive because the decentration is

upwards, and

The decentration is therefore equivalent to a prism of 2 prism

dioptres with its edge set in the negative direction, and from the

memoria technica we know that must be either upwards or

outwards, and from the conditions of the question we know that

it must be upwards. The effect of this decentred lens will be the

same as that of a normally centred 5D combined with a prism
of 2A set edge upwards.

There are, however, some objections to the prism dioptre as

a unit. It is not subject to the ordinary rules of arithmetic ;
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for instance, 2A -f 3A are not exactly equivalent to 5A. This

difficulty has been entirely obviated by Dennett's unit of the

centrad, which is the hundredth part of a radian, and is denoted

by a reversed delta (V). Each unit is practically 34 '377', but

the multiples of a centrad are appreciably greater than the mul-

tiples of a prism dioptre ; and this is even of an advantage in

using the formula N = ^V, owing to spherical aberration. It

has been adopted as the official unit by the American Ophthal-

mological Society, and before long I hope it will be universally

used in this country. When the centrad is used, 3V -f- 4V are

exactly equivalent to 7V, and 10V is ten times the strength

of IV.

What is the effect of a +2-5D lens decentred 4 mm. in?

ID (-4)(2-5)~
10
V

10

The effect will be that of a normally centred +2-5D com-

bined with a prism of one centrad set edge outwards (i.e. it will

be abducting in function).
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FORMULA FOR REFERENCE.

A. Universally true

(a) For thin centric pencils

For oblique pencils when ^ and v.2 carry the same sign

=v as w

(c) Circle of least confusion

fi + *>2
- 2s

- sfa +
i 4- Vz

- 2s

B. Refraction at a Spherical Surface

When pQ
is the index of the medium in which the source of

light lies, and // is the index of the refracting medium

-
Mo Mo

ECCENTRIC PENCILS
2 sn <

-

/AO u fv 2 M r sn

C. Lenses

MAGNIFICATION

M B

(

When KJ = J = rf + q, (i) becomes ^TT*. (u) becomes
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. CARDINAL POINTS

When =+//' -/a',

f-t /*"/ ff fiifii
ii /I* in _/ l _ "Vi/g TJH /1/2h= K> *

~K'
F
~-~K~' F = ~K'

In complex systems, t = Ha"H6', V = H'Ha', h" = H"H6".

DIOPTRES
j QQ

Whenf given in centimetres D=
-jr\ when/' in millimetres,

DECENTRATION AND CENTRADS

THIN LENSES, OBLIQUE CENTRIC PENCILS

(ii) When incident rays are parallel

D sin Q- 4Q n.D*

-~jT^i
'

~~8i^'
' DC

D. Prisms

D =
i/f
-

<#>
- A.

MINIMUM DEVIATION

D =
2,/r

- A.

sin }A
If A small, D = p - 1A.

In order to convert the formulae (B) into those suitable for a

plane surface, put r = oo . To convert them into the correspond-

ing formulae for reflection, put /u,
= 1 and

<j>'
=

<j>.



ANSWERS

CHAPTEB I (p. 10).

(1) 45 feet. (2) 70 feet.

(8) The intensity of the electric light is 900 times that of the

gaslight.

(4) The shadow cast by the gas-flame will be approximately 8

times more intense than that cast by the electric light.

CHAPTEE II (p. 17).

(1) 1 foot, 5 feet, 7 feet. (2) 7 images.

(3) One image. If ECB< 60, two images would be seen. For
PCB = 120 since AGP = 15 and ACB = 135. Produce BC to c,

and draw Pp
6
perpendicular to BC produced, cutting it at c

; make cp
b

= PC ; then the angle pbCc = 60. Consequently, the line p6E will

only cut the mirror when ECB < 60.

CHAPTEB III (p. 33).

(1) The image is 15 cm. in height, it is virtual and erect, and it is

formed 16 cm. behind the mirror.

(2) (i.) 24 inches in front of the mirror,

(ii.) 8 inches behind the mirror.

(3) r = - 6 inches ; the mirror is convex.

(4) p = 6^ inches,
- = - 11 ; the image is inverted.

CHAPTEB IV (p. 48).

(2) M = 1-54. (3) n = V2.
(5) Two prisms of minimum deviations 1 44' and 2 respectively,

if properly placed, would correct the deviation. The weaker prism
should be placed edge outwards before the left eye, while the 2 prism
should be placed edge outwards and upwards before the right eye, so

that the base apex line makes with the horizontal line an angle of 30.

129
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CHAPTEE V (p. 67).

(1) An inverted image mm. high would be formed 22'2 mm.
from the cornea, i.e. 2-2 mm. behind the second principal focus.

150 _ 1~
io'

lc ~

Ia _ -0-6 ._ 10

Ic

~
-0-6

~
9*

(3) A real image will be formed at the distance of the diameter of

the sphere from the unsilvered side.

CHAPTER VI (p. 107).

= -7-2 inches.

=-' /./'/"=CT -

(3) r
2 39 inches ; in water /'= 37 inches.

(4) (i) M = 48-5, (ii) M = 43-5, (iii) M = 50.

(5) h' or H'A = -1-6, h" or H"B =
0'8, FH' = 3-2, F"H"= -3'2.



INDEX

ABERRATION, lateral, 120

longitudinal, 31, 120

spherical lens, 89-91

reflection, 30-33

refraction, 64-65

Aplanatism, 31

Astigmatic pencil, 31-33
Axial pencil, 18, 68

BADEN POWELL lens, 104-105

Brightness, 4-6

CAMERA lucida, 111
Cardinal Points, 91-96

of eye, 99-101

Caustic, 30-31, 120

Centrads, 126
Centre of lens, 82-84
Centric pencils, 18, 68, 83
Circle of least aberration, 120
Circle of least confusion, 117-120

Coddington lens, 86-87

Conjugate focus, 19-20
Conversion of formulae, 65-67
Critical angle, 37

DECENTRED lens, 124-126
Dense medium, 34

Deviation, prism, 43-44

prismosphere, 124

refraction, 36

rotating mirror, 14-15

Dioptre, 80-81

ECCENTRIC pencils, 30-33, 64-65,
109-110, 111-117

Eye, 99-102

FOCAL lines reflection, 30-33, 109-
110

refraction, lens, 121-123

plane surface, 111-113

plate, 113-114

spherical surface, 64-65, 114-
116

GAUSS, 92

Graphic methods, for image, 29-30,
61-64, 80

for cardinal points, 105-107

HUYGENIAN eyepiece, 96-97

ILLUMINATION, 1-4

Image, lens, 69-77

plane reflection, 13-17

plane refraction, 38-40

prism, 45-46
real and virtual, 13

spherical mirror, 18-30

spherical surface, 50-64

KALEIDOSCOPE, 15

LAWS of illumination, 1-4

propagation, 1-2

reflection, 11

refraction, 34-36

Lenses, 68-107

Light sense, 3

MAGNIFICATION, 77-80i

Mirrors, plane, 11-14

concave, 18-21

convex, 22-24

NODAL points, 84, 87-89, 100-102

OBLIQUE pencils, lens, 121-123

plane surface, 111-114

spherical surface, 30-33, 109-110,
114-117

Opera glass, 98

Optical centre, 82-84

PHOTOMETER, 3

Pinholes, 7-8

Power, 80-81

Principal points, 91-96

Prism, 41-47
Prism dioptres, 124-125

Prismosphere, 124
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REFLECTION plane, 11-15

repeated, 15-17

spherical surface, 18-33

Refraction, plane, 34-47
Refractive index, 35
Rotation of mirrors, 14-15

of prisms, 46-47

SHADOWS, 8-9

Signs, 21-22, 49
Size of image, 26-27, 59-61, 73-77

Snell, 34

Sphere, 84-86

Stanhope lens, 87

TELESCOPE, penetrating power, 6
Total reflection, 37

Tscherning, 99

ULTEAMICROSCOPE, 6

Umbra, 9
Unit planes, 100

VISUAL angle, 6-7, 77, 102

WOLLASTON prism, 111

THE END

PRINTED BY WILLIAM CLOWES AND SONS, LIMITED, LONDON AND BECCLES.





THIS BOOK IS DUE ON THE LAST DATE
STAMPED BELOW

AN INITIAL FINE OF 25 CENTS
WILL BE ASSESSED FOR FAILURE TO RETURN
THIS BOOK ON THE DATE DUE. THE PENALTY
WILL INCREASE TO 5O CENTS ON THE FOURTH
DAY AND TO $1.OO ON THE SEVENTH DAY
OVERDUE.

22Apr'59fW

RET'D TO EARTH
SCIENCES LIB

JUN7 1SB2

REC'D LD j.a o 53

SEP 2 7 1957
RECEIVED

0071 7*67-10 AM

^
NOV 31957

LD 21-100m-12,'43 (8796s)



UNIVERSITY OF CALIFORNIA LIBRARY




